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Abstract

We propose a generalization of the Weierstrass iteration for over-constrained systems
of equations and we prove that the proposed method allows us to find the nearest
system which has at least k common roots and which is obtained via a perturbation of
prescribed structure. In the univariate case we show the connection of our method to the
optimization problem formulated by Karmarkar and Lakshman for the nearest GCD. In
the multivariate case we generalize the expressions of Karmarkar and Lakshman, and
give a simple iterative method to compute the optimum. The arithmetic complexity of
the iteration is detailed.

1 Summary

In many physical and engineering applications one needs to solve over-constrained systems
of equations, i.e. systems with more equations than unknowns, such that the existence of the
solutions is guaranteed by some underlying physical property. However, the input system
may be given only with limited accuracy due to measurement or rounding error, and thus
the actual input may be inconsistent.

The work presented in this paper is concerned with the question of finding the “nearest”
system with at least k distinct common roots over C. We introduce a generalization of the
Gauss-Weierstrass method [?]. In the univariate case, the proposed iterative method allows
computation of the nearest GCD of given degree, and is closely related to the formula of
Karmarkar-Lakshman for the distance to the set of systems with at least k common roots
[?]. We show how to extend the iterative method to over-constrained systems of analytic
functions. Using this extended construction we generalize the Karmarkar-Lakshman for-
mula to the multivariate case.
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More precisely, in the univariate case the problem we address in the paper is the follow-
ing:

Problem 1. Given f, g ∈ C[x] and k ∈ N, find a polynomial h of degree k such that there
exist polynomials f̃ , g̃ ∈ C[x] such that h divides both f̃ and g̃ and f− f̃ and g− g̃ have
prescribed supports and minimal 2-norms.

The method proposed here is based on a generalization of the so-called Weierstrass
method (also called Durand-Kerner method [?, ?] or Dochev method [?, ?]) introduced in
[?] (the method was generalized successively [?, ?, ?]). We show a link of this method to
the work of Karmarkar and Lakshman [?].

Our main result in the univariate case is the following theorem:

Theorem 1.1. Let f, g ∈ C[x], k > 0, and I, J ⊂ N. For fixed distinct z1, . . . , zk ∈ C we
can compute polynomials fz, gz ∈ C[x] such that the generalized Weierstrass iteration
with supports I and J , defined by

z′i := zi −
f ′z(zi)∗f(zi) + g′z(zi)∗g(zi)
|f ′z(zi)|2 + |g′z(zi)|2

i = 1, . . . , k, (1)

is the Gauss-Newton iteration for finding k roots of the nearest f̃ , g̃ with at least k com-
mon roots obtained from f, g by the perturbation of coefficients corresponding to I and J ,
respectively.

The polynomials fz, gz ∈ C[x] in Theorem 1.1 are given by

fz(x) := f(x)− Fz,I(x) and gz(x) := g(x)−Gz,J(x)

where Fz,I(x) (and Gz,J(x) similarly) is the solution of the following generalized Lagrange
interpolation problem:

Generalized Lagrange interpolation problem. Consider z = (z1, . . . , zk) ∈ Ck where
z1, . . . , zk are distinct complex numbers and some arbitrary complex numbers f1, . . . , fk ∈ C.
Fix I ⊂ N such that |I| ≥ k. The generalized Lagrange interpolation problem consists of
finding the minimal 2-norm polynomial Fz,I ∈ C[x]I with support I that satisfies:

Fz,I(zi) = fi for i = 1, . . . , k. (2)

The polynomial FI,z(x) is computed using the Moore-Penrose pseudo-inverse of the following
Vandermonde matrix associated with z = (z1, . . . , zk) and I = {i1, . . . , ip}:

VI(z) :=

 zi11 · · · z
ip
1

...
. . .

...
zi1k · · · z

ip
k

 . (3)
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In the multivariate case the problem we address is as follows:

Problem 2. Given an analytic function ~f = (f1, . . . , fN ) : Cn → C
N , N > n, and k > 0.

Find perturbations p1, . . . , pN from a given finite dimensional vector space P such that
(f1− p1, . . . , fN − pN ) have at least k distinct common roots in Cn and ‖p1‖22 + · · ·+ ‖pN‖22
is minimal.

Using a generalization of the Lagrange interpolation we obtain the following result, gen-
eralizing the formula of Karmarkar and Lakshman for the univariate nearest GCD to the
multivariate case:

Theorem 1.2. Let ~f = (f1, . . . , fN ) and k be as above. Let B1, . . . , BN be finite sets of
analytic functions. Define

Ω ~B,k(
~f) :=

{
f̃ = (f̃1, . . . , f̃N ) : |V(f̃)| ≥ k and ∀i fi − f̃i ∈ span

C
(Bi)

}
.

Then the distance of ~f to the set Ω ~B,k(
~f) is equal to

min
~z∈R~B

f∗1M
−1
B1

f1 (~z) + · · ·+ f∗NM
−1
BN

fN (~z) , (4)

assuming that the minimum exists. Here ~z = (z1, . . . , zk) ∈ (Cn)k, fi(~z) = (fi(z1), . . . , fi(zk)) ∈
C
k, MBi(~z) ∈ Ck×k is defined by

MBi (~z) =

∑
b∈Bi

b(zi)b(zj)∗


i,j∈{1,...,k}

, (5)

and R ~B = {~z ∈ (Cn)k : ∀i rank(MBi(~z)) = k}.

Similarly as in the univariate case, in order to get an iterative method to find the mini-
mum in (4), we need to solve the following interpolation problem:

Generalized multivariate interpolation problem: Given ~z = (z1, . . . zk) ∈ (Cn)k,
f ∈ C∞n and B ⊂ C

∞
n finite set. Find p ∈ Span

C
(B) such that p(zi) = f(zi) for all

i = 1, . . . , k and ‖p‖B is minimal. Here ‖p‖B denotes the 2-norm of the coefficients of p in
the C-basis B.

The polynomial p ∈ Span
C

(B) is computed using the Moore-Penrose pseudo-inverse of
the generalized Vandermonde matrix associated with B = {b1, . . . , bm} ⊂ C∞n given by its
entries as follows:

VB(~z)s,t := bt(zs) s = 1, . . . , k, t = 1, . . . ,m.

Finally, the main result of the paper asserts that a generalization of the Weierstrass
iteration gives an iterative method to solve Problem 2:
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Theorem 1.3. Let ~f = (f1, . . . , fN ), k, and ~B = (B1, . . . , BN ) be as above. Given a fixed
~z = (z1, . . . zk) ∈ R ~B we can find ~f~z = (f~z,1 . . . , f~z,N ) : Cn → C

N such that if J~z(x) is
the N × n Jacobian matrix of ~f~z(x), then the generalized multivariate Weierstrass
iteration, defined by

z′i := zi − J~z(zi)+ ~f(zi) i = 1, . . . , k,

is the Gauss-Newton iteration for finding k common roots of the nearest system f̃ ∈ Ω ~B,k(
~f).
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