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Letter from the SIGSAM Chair

Emil Volcheck

Dear readers and SIGSAM members,

Thank you for reading this issue. If you are seeing this as a printed copy, then let me welcome you to
our first printed double issue of the “ACM Communications in Computer Algebra” (CCA). Allow me to
tell you about this change. Printing and distribution of our quarterly publication is a major expense. In
order to save money, we have decided to combine printing and publish two printed double issues each year
while continuing to publish quarterly on the web. We hope that this arrangement will retain most of the
benefits of a printed publication with the same electronic access as before. Now, I would like to report to
you on a few issues.

Dues Increase

The SIGSAM Executive Committee voted to increase dues from 29 to 30 USD per year and to leave the
student rate unchanged at 9 USD. The last dues increase was in 2003, from 23 to 29 USD.

Viability Review and Finances

At the February 5, 2007 meeting of the SIG Governing Board (SGB), SIGSAM was approved to continue
for another two years, meaning that our next Viability Review will be in early 2009. The SGB resolution
reads as follows: “The SGB congratulates SIGSAM for making progress on its financial performance and
finds it viable to continue its status for the next 2 years.” You can view my presentation to the SGB here:

http://sigsam.org/officers/Viability_Review/2007/Slides.pdf .

SIGSAM has indeed made progress towards more stable finances. SIGSAM has profited from a larger
distribution of revenue from the ACM Digital Library. Printing two double issues of CCA will save us
at least 1800 USD per year. ISSAC 2006 was financially successful, returning about 1500 USD, which
SIGSAM shares evenly with the ISSAC Steering Committee. SIGSAM also saved money by no longer
offering complimentary memberships to those who register for ISSAC at the higher nonmember rate. The
dues increase will bring in a small amount of additional revenue each year. ACM Finance projects our
balance to grow by about 8000 USD in Fiscal Year 2008 to finish with over 17000 USD.

Elections

The current officers will finish their terms of office at the end of June 2007. Elections for new officers
will be held soon through the ACM online election service. The Nomination Committee consisting of Bob
Caviness, Rob Corless (chair), and Erich Kaltofen submitted the following slate of candidates to ACM:

For Chair: Mark Giesbrecht Jeremy Johnson
For Vice Chair: Peter Paule Kiyoshi Shirayanagi
For Treasurer: Dan Lichtblau Markus Hitz

For Secretary: ~ Wen-shin Lee Howard Cheng

Please congratulate the nominees and be sure to vote!
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Anthony Hearn Named ACM Fellow

Please join me in congratulating Anthony (“Tony”) Hearn for being named an ACM Fellow for his con-
tributions to computer algebra and symbolic computation. Hearn is well known as the architect and lead
developer of the REDUCE computer algebra system and also for his contributions to the application of
computer algebra to physics. I am proud to say that SIGSAM submitted the nomination which resulted
in his selection. For more information on the ACM Fellows program, please visit

http://fellows.acm.org/ .

Hearn is a former ACM National Lecturer and helped develop the CSNet in the early 1980s. He is a
long-time member of SIGSAM and served as chair from 1981-83.

Call for Nominations for ACM Dissertation Award

Please consider nominating a student for the ACM Doctoral Dissertation Award. There is so much good
research being done by doctoral students in computer algebra and symbolic computation that we as a com-
munity should strive to gain broader recognition for their work. Nominations must be made by the thesis
advisor and endorsed by the head of the department. While SIGSAM has no formal role in this process,
we are eager to help facilitate the nomination by providing supporting letters. For more information, see

http://www.acm.org/awards/ddainfo.html .

Although there is an English language requirement, this is an international award. The deadline for
submissions is August 31, 2007.

SIGSAM Supports More Conferences

SIGSAM has been asked to give scientific support to three conferences this year, which is a new milestone
for our service to the community. I am delighted to say that SIGSAM is in cooperation with Symbolic-
Numeric Computation (SNC) 2007, Parallel Symbolic Computation (PASCO) 2007, and the (US) East
Coast Computer Algebra Day (ECCAD) 2007. When SIGSAM cooperates with a conference or workshop,
that means the ACM endorses its scientific program. This allows the conference to use the ACM logo in
its publicity and to place its proceedings in the ACM Digital Library. SIGSAM members have access to
the proceedings as a benefit of membership.

Special Interest Groups of the ACM can support conferences in two ways: through sponsorship or cooper-
ation. Sponsorship of an event indicates that ACM gives its scientific endorsement to and takes financial
responsibility for the event. For instance, SIGSAM often sponsors ISSAC. Cooperation indicates scientific
endorsement but without financial responsibility. If you are planning an event for which you would like
SIGSAM support, please contact me at chair_SIGSAM@acm.org or volcheck@acm.org .

Thank you for your attention.
Sincerely,

Emil Volcheck
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Computing Grobner Bases of Ideals of Few Points in High Dimensions
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Abstract

A contemporary and exciting application of Grobner bases is their use in computational biology,
particularly in the reverse engineering of gene regulatory networks from experimental data. In this
setting, the data are typically limited to tens of points, while the number of genes or variables is
potentially in the thousands. As such data sets vastly underdetermine the biological network, many
models may fit the same data and reverse engineering programs often require the use of methods for
choosing parsimonious models. Grobner bases have recently been employed as a selection tool for
polynomial dynamical systems that are characterized by maps in a vector space over a finite field.

While there are numerous existing algorithms to compute Grobner bases, to date none has been
specifically designed to cope with large numbers of variables and few distinct data points. In this paper,
we present an algorithm for computing Grébner bases of zero-dimensional ideals that is optimized for the
case when the number m of points is much smaller than the number n of indeterminates. The algorithm
identifies those variables that are essential, that is, in the support of the standard monomials associated
to a polynomial ideal, and computes the relations in the Grébner basis in terms of these variables. When
n is much larger than m, the complexity is dominated by nm3. The algorithm has been implemented
and tested in the computer algebra system Macaulay 2. We provide a comparison of its performance to
the Buchberger-Moller algorithm, as built into the system.

Keywords: Grobner bases, Buchberger-Moller algorithm, essential variables, run-time complexity, com-
putational biology applications

1 Introduction

The theory of Grobner bases has been an active field of study in the last four decades, beginning with the
seminal work of Buchberger [6]. A problem of particular interest has been the development of algorithms
for computing Groébner bases. The first algorithm, proposed by Buchberger, has time complexity that
is doubly exponential in the number of variables [7]. Since then, several improvements to Buchberger’s
algorithm have been proposed, as well as a number of alternative methods for certain classes of ideals.

Many of the improvements focus on two aspects. The first is coefficient growth when computing
Grobuner bases in a field of characteristic 0 (for example, see [5]). The second is Buchberger’s Criterion,
which states that

“Aset G ={g1,...,9-} C Iisa Grobner basis for I if and only if the S-polynomial S(g;, g;)
isOforall 1 <i4,5<r.”

The Optimized Buchberger Algorithm [9] proposed by Caboara et al. and Faugére’s F'4 and F5 [13, 14]
are instances of methods that seek to minimize the number of S-polynomials to be computed. While
they still have exponential complexity in the worst case, in practice their performance renders them
efficient alternatives to the original Buchberger algorithm.

For zero-dimensional ideals, several methods have been described and implemented. In [8], the
authors presented the Buchberger-Moller algorithm (BMA) for computing the reduced Grobner basis
for the vanishing ideal of a variety V over a field. This algorithm eliminates the need to compute
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S-polynomials and instead performs Gaussian elimination on a generalized Vandermonde matrix. Its
complexity is quadratic in the number of variables and cubic in the number of points in V' (for details,
see [1, 20, 21, 22]). It has been implemented in publicly available computer algebra systems such as
CoCoA [10] and Macaulay 2 [15]. The BMA was later generalized to noncommutative rings [4]. Abbott
et al. [1] described a modular version of the BMA for the case when k = Q.

There are other algorithms for zero-dimensional ideals which have been developed for particular
settings. Farr and Gao presented an algorithm based on a generalization of Newton interpolation in
[12]. While the complexity is exponential in the number n of variables, the algorithm has been optimized
for the case in which n is small as compared to the number of points. Lederer proposed a method for
lexicographic term orders which gives insight into the structure of the Grébner basis [19].

A recent and exciting development in the theory of Grobner bases is their use in computational
biology. For instance they have been used in the identification of critical points of maximum likelihood
functions in phylogenetic-tree reconstruction [16]. Grobner bases have also been employed as a selection
tool for polynomial dynamical systems (PDSs) in the study of gene regulatory networks [18] and protein
signal transduction networks [3].

In applications to molecular biology, networks often consist of n biochemicals, such as gene products
or metabolites, with changing concentration levels. In [18] a method was proposed to reverse engineer
biochemical networks, where the levels are mapped to a finite field k& = IF,, for some prime p. In this
setting, networks are modeled as PDSs, which generalize the widely studied Boolean networks (see [17]
for an introduction). Concentration levels are recorded in a vector in k™, and the data consists of input-
output pairs (s;, s;+1) € k™ X k™, where s; is a vector describing the state of the network at time 4, for
i =1,...,m. The input vectors can be viewed as an affine variety V' C k", and a family of models
represented as PDSs is constructed in terms of the vanishing ideal of V. Grébner bases are then used to
select the most parsimonious PDS from this collection. In these applications, the number n is typically
in the hundreds to thousands, whereas the number m is at best on the order of tens of measurements.

Below we describe an algorithm for computing Grébner bases for zero-dimensional ideals (i.e., van-
ishing ideals) in a polynomial ring R. This algorithm is specialized for the case when the number m of
distinct points is much smaller than the number n of variables. In this setting, there are few relations in
terms of essential variables, that is, variables that are in the support of the standard monomials associ-
ated to an ideal. The remaining ones are of the type x; — g where the leading term z; is not an essential
variable and the support of g has only essential variables. Therefore computation of a Grobner basis
can be restricted to a proper subring of R containing only essential variables. The algorithm identifies
these variables and computes relations of the first type using the BMA. The relations of type z; — g are
computed using standard linear algebra techniques. We have implemented the algorithm, which we call
EssBM, in Macaulay 2.

The paper is organized as follows. First we describe the EssBM algorithm. In Section 3, we provide
the theoretical support for the algorithm and include a complexity analysis. In Section 4, we compare
its performance to the BMA, as implemented in Macaulay 2. We conclude our paper with a discussion
of future directions.

2 The EssBM Algorithm

Let R = k[z1,...,x,] where k is a field, and = be a fixed term order on R. Consider a variety V C k™ of
points with multiplicity one and |V| = m < co. Here we are primarily interested in finite fields, where
these conditions will automatically be satisfied for all varieties. The goal of the EssBM algorithm is
to construct the reduced Grdbner basis G with respect to > for the ideal I(V') of points in V' and the
set B(G) of standard monomials associated to G, which forms a basis for the k-vector space R/I(V).
The algorithm constructs a set EV C {x1,...,z,} of essential variables, a set SM of monomials on
{z1,...,2,}, and subsets GB and Rel of the ring R. We will see below that G will be given by GBU Rel
and B(G) by the set SM. The support (defined in the next section) of the elements in SM is the set
EV. We let EV;, SM;, GB;, and Rel; denote the i-th approximations of the corresponding sets.
Initialize each set as follows: EVy = {}, SMy = {1r}, GBy = {}, and Rely = {}. Let [n] denote
the set {1,...,n} and 2 the monomial z{* ---x%". For each i € [n], do the following. Find the i-th
smallest variable, say x;. Suppose there are r monomials x®!,... z in SM;_; that are smaller than
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x; in the given ordering. Try to write x; as a k-linear combination of these monomials. That is, find (if
they exist) ¢1,...,¢, € k, where

ri(1) = 3 s (1)

2:(2) = Z ¢;x% (2)

zi(m) = cja® (m)
j=1
and x*(t) is the evaluation of z® at the ¢-th point in V' for ¢ € [m]. If there are such coefficients, then
x;(t) — chac“j (t)=0
j=1

for every t € [m] and it follows that i := z; — Y75, ¢;z% € I(V)NK[EV;_1U{z;}], where k[EV;_1 U{z;}]
is the polynomial ring in the variables in EV;_; U {z;}. Since the monomials % were chosen so that
x; = %, it follows that x; is the leading term of an element of I(V') and so is not a standard monomial.
In this case let Rel; = Rel;—1 U {h}. If there is no solution to the system in (1), then z; is a standard
monomial. In this case let EV; = EV;_; U{z;}, and compute the Grébner basis GB; and the set SM; of
standard monomials for the ideal I(V') N k[EV;] of the points projected onto the variables in EV;. When
i = n, return the sets G := GB,, U Rel,, and B(G) := SM,,.

Below we give pseudo-code for the complete algorithm, which has been implemented in Macaulay 2.
While the BMA computes separators for the points in V' in addition to the Grébner basis and the set
of standard monomials, the implementation in Macaulay 2 does not. In order to appropriately compare
the two implementations, we do not include separators in this version of EssBM. However, our algorithm
can easily be modified to return the separators at an additional cost of O(m).

For simplicity, let [z;(t)]72; denote the (m X 1)-column vector

The EssBM Algorithm

Input: V a variety; > a term order
Output: G the reduced Grobuer basis for I(V) with respect to =;
B(G) the set of standard monomials for G

1. Initialize: EVy :={}; SMy:={1gr}; GBy:={}; Relo:={}.

2. For i from 1 to n do

3. x; := i-th smallest variable

4. S = k[EV;_1 U{x;}] with term order >g induced by >

5. r:=|SM;_1| and LM; := {2% <g z; : 2% € SM;_1,1 < j < r} the standard monomials less
than z;
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6. A; = (m x (s 4 1))-matrix with s = |[EV;_1|
first column [z;(¢)]72; and s columns [z;(¢)]j~, for all x; € EV;_4

Eval; := (m x r)-matrix (2% (p;)), where % € LM, is evaluated on p;, the point in row ¢ of A;

. If there is a solution ¢ = (c1,...,¢.)T to the system of linear equations Eval; - ¢ = [z;(t)]1™,
9. then Rel; := Rel;—1 U{x; — > c;x% } where % € LM;
10. else EV; := EV;_; U{x;} and compute GB; and SM; in k[EV;] using the BMA on A;

11. Return G = GB,, U Rel,, and B(G) = SM,,

The variables in EV,, are called essential. The polynomial z; — > ¢;2% computed in the i-th step
of the algorithm has z; as its leading term since the monomials % were chosen to be smaller than x;.
The variables z; are called inessential since they can be written in terms of essential variables.

3 Theoretical Background

In this section, we provide a detailed proof of the correctness and worst-case time complexity of the
EssBM algorithm. Before stating and proving the main results, namely Theorems 5, 7 and 8, we begin
with some preliminaries.

Recall that the matrix A; has rows corresponding to the points in V' projected onto the coordinates
defined by EV; = EV;_1 U {x;}. Let P; be this set of projected points.

For the remainder of this paper, we use the shorthand notation I for the ideal I(V) and k[EV;] for
the polynomial ring in the variables in the set EV;. Also, we let G = GB,, U Rel,, and B(G) the set of
standard monomials for G.

Lemma 1. The equality I(P;) = I Nk[EV;] holds.
Proof. This follows immediately from the construction of the ideal I(FP;). O

Corollary 2. The set GB; is the reduced Griobner basis for the ideal I N k[EV;] with respect to = and
SM,; is the set of standard monomials for I N k[EV;] with respect to GB;. In particular, the statement
holds for i =n.

Proof. The sets GB; and SM; are the reduced Grébner basis and the set of standard monomials,
respectively, for the ideal I(P;) in k[EV;]. From the previous lemma, we have that I(F;) = I Nk[EV}].
Hence the result follows. O

Let f € R be a polynomial. We define the support of f, denoted by supp(f), to be the set of variables
that appear in f. By construction, supp(f) is the smallest set X C {z1,...,z,} such that f € k[X].
The support of a set of polynomials S is the union over the support of each polynomial g € S. Let
LT(f) denote the leading term of f with respect to a given term order. The tail of f is the polynomial
tail(f) := f — LT(f).

Lemma 3. Let f € R be such that supp(f) C EV, U {xg,,...,xa,} where x5, < --- < xg, are
inessential variables. Suppose that supp(LT(f)) C EV,. Then there is f* € R such that supp(f*) C
EV, U{zg,,...,x3, ,}, the polynomial f* has the same leading term as f, and f — f* € I.

Proof. Consider the largest inessential variable zz,. We can write
f=LT(f)+Y (x5,)h:
i=0

where supp(h;) C EV,,U{zga,,...,23,_,}. As xg, is an inessential variable, there is an element zg, + g
of Rel,, with leading term xs,. Note that supp(g) C EV;,. Define the polynomial f’ from f by replacing
each (zg,)" with —(zg,)" 'g:

T

f'=LT(f) =Y (wp.) " ghi.

=0
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Then

f=f =) (@) +(zs) g)hi €l
i=0
since (2g,)" + (25,)" 19 = (z5,) Ywp, +g) € I. As LT(f) = xg, = LT(g), we have that LT(f') =
LT(f). Let f* be the polynomial obtained after r replacements of zg,. Note that we have f — f* € I
and LT(f*) = LT(f). Since we have replaced all occurrences of zg,, it follows that supp(f*) C EV,, U

{3351,...,3;‘5371}. ]

This lemma gives us a way of removing inessential variables from a polynomial in I without affecting
its leading term, which will be useful for proving the correctness of EssBM (Theorems 5 and 7). In fact,
we can remove all inessential variables. We emphasize this fact with the following corollary.

Corollary 4. Let f € R. Then there is f* € R such that supp(f*) C EV,, LT(f*) = LT(f), and
f—rel

Theorem 5. The set G is the reduced Grobner basis for I with respect to >.

Proof. We first show that G C I. Consider g € G. If g € GB,, then g € I. Suppose that g € Rel,.
Then g is of the form z; — ) ¢;a% for some ¢; € k and % € R = k[z1,...,x,]. The coefficients ¢; were
chosen so that z;(t) = 3 ¢;2% (¢) for all ¢t € [m]. Therefore by construction g € I.

Now let f € I. We must show that there is some g € G such that LT (g) | LT(f). We distinguish
two cases.

Case 1: supp(LT(f)) ¢ EV,,.
Suppose that LT(f) contains an inessential variable x;. By construction of the set Rel,,, there is
an element g of Rel,, C G with leading term x;. It follows that LT (g) divides the leading term
of f.

Case 2: supp(LT(f)) C EV,,.
Recall that the set GB,, is a Grobner basis of the projection of I onto the variables in EV,, (see
Corollary 2). If supp(tail(f)) is also contained in EV,,, then f € k[EV,,] and thereisag € GB,, C G
whose leading term divides LT'(f).
Assume that supp(tail(f)) ¢ EV,. Using Corollary 4, we can find h € I such that supp(f — h) C
EV, and LT(f —h) = LT(f). Since f — h € k[EV,,], there is a g € GB,, C G whose leading term
divides LT(f — h) = LT(f).

To prove that G is reduced, let g # h € G. We wish to show that g and h satisfy the following
criterion:
LT(g) does not divide any monomial in h. (2)

We consider the following four cases.

Case 1: g,h € GB,.
As GB, is the reduced Grébner basis for the ideal I projected onto the essential variables, then
g, h satisfy (2).

Case 2: g,h € Rel,.
Let LT(g) = x; and h = xj — Y. c;a® for i # j. Note that supp(h) C EV;_1 U{x;}. Clearly z;
does not divide x;. As supp(tail(h)) C EV,, and x; ¢ EV,,, then x; does not divide any monomials
in tail(h).

Case 3: g € GB,, and h € Rel,.
Let LT(h) = x; for some inessential variable. This will not be divisible by LT(g), which contains
at least one essential variable. All other terms x® of h are standard monomials for the projection of
I onto the variables in EV;; in particular, supp(z®) C EV;. Tt follows that if supp(g) C EV;, then
LT(g) does not divide any term of h. By Corollary 2, supp(g) contains only essential variables.
Thus if supp(g) is not contained in EV;, then supp(g) must contain a variable z; with x; < z;.
This z; divides some term z° of g, and it follows that if LT(g) divides some term z® of h, then
x; = 2% = LM (g) < 2® < x;, which contradicts the assumption that x; < zj.

71



Computing Grébner Bases of Ideals of Few Points in High Dimensions Formally Reviewed Article

Case 4: g € Rel,, and h € GB,,.

Then LT(g) is some inessential variable, say x;. However, supp(h) C EV,, and so g,h satisfy
criterion (2).

O

Next we compute the number of elements in B(G) and show the relationship between %B(G) and the
set SM,,.

Lemma 6. The set B(G) has |V| elements.

The previous lemma is usually stated for algebraically closed fields k and proved with the help of
the Strong Hilbert Nullstellensatz (see [11]). We include a proof of the statement for the case where all
points have multiplicity one, as is being assumed throughout the paper.

Proof. Suppose V = {a1,...,an} and define I; :=I({a;}). Then I =I(J;*,{a;}) = N.~, L, since each
point a; has multiplicity one. Note that each of the ideals I; is maximal and it follows that they are
pairwise comaximal. Consider the quotient ring R/I. By the Chinese Remainder Theorem, there is a
ring homomorphism such that

R/I2R/I} X --- X R/Ip,.

As each I; is maximal, then each R/I; = k and it follows that R/I = k™ as rings. Further, the quotient
ring and k™ can be viewed as k-vector spaces, and the isomorphism can be extended to an isomorphism
of vector spaces. Hence, the dimension of R/I as a vector space is dimy(R/I) = m. Since B(G) forms
a basis for the vector space R/I (Proposition 2.1.6 in [2]), we conclude that |B(G)| = m = |V]. O

Theorem 7. The set SM,, is the set of standard monomials for I with respect to G.

Proof. By Corollary 2, we have that SM,, is the set of standard monomials for the ideal I N k[EV,,]
with respect to the Grobner basis GB,,. As V has finitely many points, then |%B(G)| = |V|. Consider
a monomial z% € B(G). If 2 ¢ k[EV,], then it contains an inessential variable, say z;. As xz; is
the leading term of an element in Rel, C I, it is not a standard monomial for G, contradicting the
assumption that z¢ ¢ B(G). Therefore 2 € k[EV,,].

By construction, 2% ¢ LT(I). Using the set-containment relation

LT (INk[EV,)) C LT(I),

it follows that z® ¢ LT(I N k[EV,]) and so B(G) C SM,. To see equality, note that the set P, of
projected points defined by EV,, has at most as many points as V. Then |SM,| = |P,| < |V| = m.
Since B(G) C SM,, it follows that m = |B(G)| < |SM,| < m. Hence B(G) = SM,; that is, SM,, is
the set of standard monomials for I with respect to G. O

We conclude this section with a complexity analysis of EssBM.

Theorem 8. The EssBM algorithm terminates and has worst-time complexity O(nm?3) + O(m?®), which
is dominated by O(nm3) when m < n.

Proof. We compute the complexity of each step and then provide a summary at the end. Step 1 has
complexity O(1). In Step 2, the algorithm enters a loop of length n. Steps 3-8 are executed in each
iteration of the loop. They have the following complexities:

Step 3. O(1): Executing this step requires constant time since the variable order, given as part of the
declaration of the term order, is maintained in one array.

Step 4. O(m?): This step may not even be required by all implementations; if required, it involves passing
O(m?) variables to a new object of size O(m?).

Step 5. O(m3): As term orders are typically stored as matrices, in this case the term order <g is a matrix
of dimension O(m?). Determining the order between two monomials of S requires multiplication
of a vector of length O(m) by this matrix. So for each monomial 2% € SM;_1, there are at most
m? operations required for comparing z; to % and there are at most m such monomials.
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Step 6. O(m): An (m x 1)-column vector is added to a matrix with columns corresponding to the variables
in EV;_4.

Step 7. O(m?): As there are at most m variables in each monomial and at most m? entries in the matrix,
the cost of executing this step is O(m?).

Step 8. O(m?): Solving a linear system of m equations in r < m unknowns requires O(m?) time.

Step 9 has complexity O(1) and will be executed at most n times.

Since there can be at most m essential variables, Step 10 will be executed at most m times. The
complexity of each execution of Step 10 is O(m*): Updating EV; is a constant operation. However,
computing GB; and SM; for the matrix A; is associated to the cost of calling the BMA, which is
O(nm3 + n?m?) ([20]; for a synopsis, see [1, 21, 22]). In this case, the numbers of points and required
variables are given by the dimensions of A;. Since both row and column dimensions are bounded above
by m, it follows that the complexity of executing this step is O(m?).

Step 11 has complexity O(n + m?): Note that there are O(m?) elements in GB, (see [20]), O(n)
relations in Rel,,, and m monomials in SM,,. So returning these sets requires O(n +m? +m) operations.

Hence, we can calculate the total complexity C(EssBM) of the algorithm as follows:

C(EssBM) = O(1)+0(n) [O(1+ m? +m?® +m+m®+md+ 1]+ O(m)O(m*) + O(n +m? + m)
= O(nm?®) +0(mP).

When m < n, then O(nm?) becomes the dominating term and the above estimate reduces to

C(EssBM) = O(nm?).

4 Performance of the EssBM Algorithm

To test the performance of our algorithm, we compared its run-time to that of the BMA!, as implemented
in Macaulay 2, on randomly generated varieties in k™. For this analysis, we let the field k be F, for
p € {3,17}. Since the complexities of the two algorithms depend on m and n, we chose a range of
values for these parameters, namely, m € {5,10,15} and n € {100, 150,200, 250,300}. For each set of
parameters p, m, and n, we generated 10 varieties using a built-in random number generator in Macaulay
2, without specifying prior constraints on the relative position of the points in the variety. We performed
this experiment using two term orders: a lexicographic order (lex) and a graded reverse lexicographic
order (grevlex), each with the same variable order.

Figures 1 and 2 show the run-times for the two algorithms for p = 3 and m = 5, 15. As the run-times
for m = 10 fall between the m = 5 and m = 15 settings, we omitted them from the plots. We display
the results for all parameters settings in the appendix. The run-times for p = 17 are similar.

As a measure of the stability of the run-time data, we computed the coefficient of variation, defined
to be the ratio of the standard deviation to the mean of the data. For the grevler experiments, this
coefficient ranges from 0.004 to 0.2, whereas for the lex experiments it ranges from 0.01 to 0.1. Since
this implies very low variability of the run-times for fixed p,n, and m, we displayed only mean values in
Figures 1 and 2.

The empirical results corroborate our theoretical prediction that for m < n, the EssBM algorithm
outperforms the BMA. For small n, however, we observe that EssBM is slower, which we attribute to
the overhead costs associated to multiple calls to the BMA.

5 Discussion

Recently, applications of Grébner bases as a promising model selection tool in molecular biology have
been proposed [3, 18]. These applications require computation of a Grobner basis for a zero-dimensional

!The Buchberger-Méller algorithm has been implemented as the function points in the “Points” package of Macaulay 2
distribution version 0.9.8.

73



Computing Grébner Bases of Ideals of Few Points in High Dimensions Formally Reviewed Article

ideal I(V) in a polynomial ring k[x1,...,z,], where |V| = m < n. Previously, no algorithms for
computing Grobner bases optimized for m < n had been available. The run-time of the existing
implementations was a bottleneck in applications of the methods in [3] and [18] to data sets whose size
is of the order typical for biochemical data sets such as microarray data.

The EssBM algorithm presented here goes some way towards alleviating this problem in that it re-
duces the worst-case complexity, which is O(nm?3+n?m?) for the standard Buchberger-Méller algorithm,
to O(nm3) for m < n. Our implementation and testing indicate that for a small number of distinct
points in general position, EssBM starts outperforming a standard implementation of the BMA when
the number of variables exceeds 200. This should make it possible to use the methods of [3] and [18]
for analysis of larger data sets than was hitherto possible. Unfortunately, the worst-time complexity
estimate O(nm?3 4+ m®) of the EssBM algorithm suggests that it may still be infeasible for moderately
large m. We are currently working on a related algorithm that would further reduce this complexity.
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Figure 1: Run-times averaged over 10 randomly generated varieties for p = 3 and lex.
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Figure 3: Run-times for 10 randomly generated varieties and lez.
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Figure 4: Run-times for 10 randomly generated varieties and grevlex.
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“Approximate Commutative Algebra” —

an ill-chosen name for an important discipline

Hans J. Stetter, Vienna

stetter@aurora.anum.tuwien.ac.at

Classical algebra has always considered itself as a discipline in Discrete Mathematics, even when it dealt
with objects over the real or complex numbers (R or C), where the inherent topology of the number
fields would have invited the use of analytic tools. A first change occurred only when the models of
applied mathematics required the treatment of larger and larger systems of linear equations and the
emerging electronic computers permitted the implementation of algorithms with huge data sets. In the
rapidly growing “Numerical Linear Algebra”, norms and distances, contractive iterations etc. were used as
standard tools: Classical linear algebra over R and C became embedded into Analysis. (As a consequence,
in the 2000 Mathematics Subject Classification of the AMS, “Numerical Linear Algebra” is not listed as a
subdiscipline of Algebra but of Numerical Analysis.)

In the 1980’s, software systems for algebra began to develop at a large scale: Mathematica and Maple have
become widely used general-purpose systems while other systems deal with more specialized areas. But
to the distress of application scientists using polynomials and other algebraic relations in their models,
none of these systems admitted the use of floating-point data within algebraic computations. Finally, the
resulting pressure began to erode the resistance of algebraists against numerical operations in algebraic
algorithms: Slowly, the conceptual background for the use of data with limited accuracy is now considered
in polynomial algebra and algorithms with such data are implemented.

Obviously, this is no longer a mere subdiscipline of Commutative Algebra; so what should it be called.
The natural analog to Numerical Linear Algebra, viz. “Numerical Commutative Algebra” has, perhaps,
sounded too anti-algebraic for an algebraically trained mind. In any case, a recent workshop exclusively
devoted to this new area! was named “Approximate Commutative Algebra”! And it appears that the word
“approximate” is becoming popular amongst computational algebraists in the context of data with limited
accuracy. In my opinion, this is unfortunate and should not be continued; in the remainder of this article,
I will explain my reasons.

First of all, the connection of the word “approximate” with a mathematical discipline is antithetic; there
can be approximate solutions of some mathematical problem but an approximate mathematical theory
is a contradiction in itself! Let us again consult the 2000 MSC: There appears no “approximate”
mathematical discipline in that voluminous overview of all of mathematics. Also, to my knowledge, the
term “approximate linear algebra” has never been seriously proposed or used. So why should the analogous
embedding into analysis of commutative algebra over numerical fields be ear-marked in this way, which
may lead to serious misinterpretations by outsiders.

In order to support the natural alternate name “Numerical Commutative Algebra” and to discourage the
use of “approximate” in connection with algebraic objects, I will shortly display the character of Numerical

"Workshop B1 of the Special Semester on Grébner bases and related methods, Univ. Linz, Feb. 2006

79



“Approximate Commutative Algebra” Timely Communication

Linear Algebra; then I will show that the new nonlinear algebraic discipline is an immediate analog. So
what is Numerical Linear Algebra (NLA):

NLA is Linear Algebra (LA) over the real or complex numbers, with a transfer of their natural topology.
This topology is associated with the data of the discipline, not with its objects! All technical terms from LA
retain their their full meaning in NLA: Linear space, basis, linear (in)dependence, linear transformation,
etc. etc. However, since an n-dimensional linear space L over R is isomorphic with some R", there is
now a topology within L: Elements (points) have neighborhoods, two elements have a distance, an element
can be a good approximation of another one, etc. And an approximation to a requested element can be
successively improved, iterative algorithms become a natural tool.

The constructive problems to be solved are the same as in LA; but through their data, these problems
are conceived as embedded into a continuous metric setting. This widens the scope for their treatment
immensely. And, as an important consequence, the analytic embedding permits the consideration of the
problems for data with a finite accuracy (approximate data). Due to the underlying linear structure, most
of these extensions are straightforward and have become standard by now. While textbooks on LA and on
NLA appear very different at a first glance, their contents can really be related readily by the described
analytic embedding.

I claim that the transition from Commutative Algebra (CA) to “Numerical Commutative Algebra” (NCA)
(rather than “Approximate Commutative Algebra”) is fully analogous to that from LA to NLA: We consider
areas of commutative algebra not over arbitrary fields or rings but over the analytically structured fields
of the real or complex numbers, and we transfer their metric into our considerations.

The numerical computation of zeros of univariate polynomials or of systems of multivariate polynomials
has followed this approach for a long time: With current software and hardware, approximate zeros of huge
polynomial systems are generated on the spot. But Newton’s method and its variants have always been
considered as analytic not as algebraic procedures. Commutative algebra, on the other hand, considers the
complete zero set of the polynomial ideal defined by a polynomial system.

The translation and extension of this intrinsically algebraic approach into NCA requires — in the end — the
design of an algorithm which analyzes the structure of the ideal and computes approximations for all zeros
of the polynomial ideal to a requested accuracy, or to the meaningful accuracy permitted by approximate
data. Note that this goal goes far beyond the potential of CA where generally the algorithmic generation
of a Groebner basis is as far as one can proceed, even for integer coefficients.

When we strive to use and extend classical CA for real or complex coefficients in this way, we must be very
careful with our concepts and terminology. What should be the meaning of an “approximate polynomial”?
As a mathematical object, we must represent a polynomial with (some) coefficients of specified limited
accuracy by the set of all polynomials which round to our given polynomial. Obviously, at the specified
level of accuracy, the polynomials in this set are indistinguishable; but each member of the set is an ordinary
polynomial in the classical sense and obeys the classical rules. Because it does not carry a connotation, a
term like “empirical polynomial” is much preferable to describe such an object.

An algebraic assertion about an empirical polynomial is true if it is true in the classical sense for some
polynomial in the set: A number is a zero of an empirical polynomial if it is an exact zero of one of its
indistinguishable polynomials, and a given empirical polynomial is a member of a specified polynomial
ideal if there is some polynomial within the set which is strictly in the ideal, etc. Thus the indetermination
remains exclusively in the data and does not affect the mathematical structure. This corresponds directly
to analogous notions in NLA where, e.g., a vector x with components of limited accuracy lies in a specified
linear space if some vector which rounds to x is strictly in this space.
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A good example of the misleading potential of “approximate” mathematical objects is displayed by the
term “approximate vanishing ideal” which I have recently seen used. While some polynomial may “nearly
vanish” on a set of empirical points in some R"”, the ideal of several such polynomials will mostly contain
polynomials without that property.

In my book? , there are many examples which show that the mathematically consistent extension of
concepts in CA to NCA requires the same considerations and steps as the extension from LA to NLA.
Because this extension is less straightforward in the nonlinear case, it appears particularly important to
retain the meaning of the classical algebraic concepts and not to blur the situation by attaching the word
“approximate” to them. In particular, the principal analogy with NLA should be emphasized by calling
the new emerging discipline “Numerical Commutative Algebra”.

2Numerical Polynomial Algebra, XVI + 472 pp., SIAM Publ., Philadelphia, 2004
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Dimension vector and the size of the formal solution space of system of
PDEs

Mei Jianqgin and Zhang Hongqging
Department of Applied Mathematics
Dalian University of Technology
Dalian 116024 P.R.China

meiqin-303@sohu.com
zhanghq@dlut.edu.cn

In a sense, knowing what is big and what is small is more important than being able to solve partial differential
equations. Combining the standard form in the Riquier-Janet theory and Cartan character in Cartan-Kahler theory,
a new definition about the dimension of solution space has been put forward. The size of formal solution space
measured by a dimension vector, which can be uniquely determined independence of ordering and compatible with
physical problem.

Small, Browser-Based Computer Algebra Systems
Markus A. Hitz
North Georgia College & State University
Dahlonega, GA 30597, USA

mahitz@ngcsu.edu

Recent versions of web browsers, such as Morzilla Firefox, natively support major parts of the Scalable Vector
Graphics (SVG), and the Mathematical Markup Language (MathML) standards. Both languages are defined in
XML, as is the latest version of HTML (XHTML). Objects that are created in one of these languages reside in
separate XML namespaces within the tree defined by the Document Object Model (DOM). They can be accessed
and manipulated through JavaScript programs that can modify, create, or delete entries in the DOM tree. The
combination of scripts and XML data structures enables us to build small computer algebra systems that include
graphics (2D and 3D plots), basic symbolic capabilities, and formatted output of mathematical objects. Small
systems can be used, either embedded in web pages, or as special purpose applications. They can be tailored to
individual needs in presentations, or for on-line instruction.

We investigate the special challenges that implementors of such systems have to face. JavaScript is an interpreted
language with limited support of object-oriented programming. Therefore, we cannot expect to see the kind of
performance we would get from optimized C++ computer algebra libraries. However, general purpose computer
algebra systems also use command-interpretation as the main interaction with users. Unlike Java or C++, JavaScript
bases its object-oriented constructs on “prototypes” (as opposed to classes). Furthermore, inheritance and typing
are severely limited. On the other hand, its simple interface to DOM elements makes it extremely powerful, and
provides intuitive tie-ins for developers.

86



Zhendong Wan

We began to port a small computer algebra system, JSCL-Meditor, from Java to JavaScript. It was originally
designed to be a MathML-editor. In the meantime, it evolved into a system with limited symbolic capabilities that
can run on small platforms, such as PDAs. We intend to keep most of the modules, while improving support of
content-MathML and adding SVG-based graphics components. We consider our implementation to be a first proof-
of-concept for a client-side system. We will continue to add modules and user interfaces that allow for improved
interaction with graphical, and geometrical objects.

References

[1] http://www.w3.0rg/TR/SVG11/, Scalable Vector Graphics.
[2] http://www.w3.org/TR/MathML2/, MathML version 2.0.

[3] http://jscl-meditor.sourceforge.net/, the JSCL-Meditor project.
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Communicated by
William Sit

Dept. of Math., The City College of The City University of New York (wyscc@sci.ceny.cuny.edu)

The Special Session on Differential Algebra of the American Mathematical Society (AMS) Eastern Section Spring
Meeting, will be held on April 14-15, 2007 at Stevens Institute of Technology, New Jersey, USA. The following
abstracts of invited speakers at this Special Session have been edited for reproduction by kind permission of AMS.
With some exceptions, they are listed in alphabetical order by presenters. For all abstracts, only the email contact
information of the presenter is given. The Special Session is jointly organized by the Kolchin Seminar in Differential
Algebra of the City University of New York and the Department of Mathematics and Computer Science at Newark
Campus of Rutgers, the State University of New Jersey. For further information, please visit site below.

http://www.sci.ccny.cuny.edu/~ksda/ams.html

Galois Theory and Spectral Theory
A Preliminary Report

Primitivo B. Acosta-Humanez

Dept. of Appl. Math., Technical University of Catalonia, Barcelona, Spain (primitivo.acosta@upc.edu)

The aim of this talk is to show an application of Differential Galois Theory in Spectral Theory. In a particular
case, we analyze the integrability and the Galois groups of the stationary Schroedinger equation. For example, if
the potential is a polynomial, then the Galois group of the Schroedinger equation is a connected non abelian group.
On the other hand, if the potential is not a rational function, but there exists a hamiltonian change of variable,
then we can algebrize the differential equation preserving the identity component of the Galois group in the original
Schroedinger equation: this is the case of Lame equation and Mathieu equation. Finally, we can generate families
of Schroedinger equations using the Darboux transformation, Kovacic algorithm and operators theory, where the
principal fact is that the Darboux transformation is covariant, isogaloissian and isospectral transformation. This fact
plays an important role in quantum mechanics.

Symplectic Properties of the Space of Differential
Equations in the Space of Logarithmic Systems

Jonathan Alexander Aidan
175, rue Chevaleret, Bureau 7C08, 75013 Paris, France (aidan@math.jussieu.fr)

Let n > 1, let S be a finite set of points of the Riemann sphere, and let M be the moduli space of irreducible fuchsian
systems of rank n with logarithmic singularities lying in S and given “generic” local monodromies. This space is
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naturally endowed with a symplectic structure w. Let further £ be the space of irreducible Fuchsian differential
equations of order n, with singularities lying in S and same local monodromies. Following a construction of van der
Put and Singer, we can locally embed £ as a subspace A of M. As remarked by N. Katz, the dimension of N is half
the dimension of M. We elaborate on this remark by proving that A is a Lagrangian subspace of M relatively to
the symplectic structure w.

Arithmetic Partial Differential Equations

fAlexandru Buium and Santiago Simanca
Dept. of Math. and Stat., University of New Mexico, Albuquerque, NM 87131 (Tbuium@mathunm.edu)

We develop an arithmetic analogue of linear partial differential equations in two independent “space-time” variables.
The spatial derivative is a Fermat quotient operator, while the time derivative is a usual derivation. This allows us
to “flow” integers or, more generally, points on algebraic groups with coordinates in rings with arithmetic flavor.
In particular, we show that elliptic curves have certain canonical “arithmetic flows” on them that are arithmetic
analogues of the convection, heat, and wave equations. The same is true for the additive and the multiplicative
group.

Borel-Laplace Summation of ¢-Series and Confluence
A Preliminary Report

Lucia Di Vizio
IMJ, Topologie et geometrie algebrique, 175 rue du Chevaleret, 75013 Paris, France (divizio@math.jussieu.fr)

We will explain the issues of confluence for Borel-Laplace summation through some examples. Then we will give a
partial answer to the general problem. This is a joint work in progress with Changgui Zhang.

Canonical Representation of Radical Differential Ideals

Oleg Golubitsky

Ontario Research Centre for Computer Algebra and Dept. of C. Sc.,
University of Western Ontario, London, Ontario N6A5B7, Canada (oleg.golubitsky@gmail.com)

For every radical differential ideal, one can compute a decomposition into prime (or characterizable) components,
which allows to test ideal membership. This representation of the radical differential ideal is not unique in three
respects:

e The components are not unique.

e The representation of each component by a characteristic set is not unique.

e The decomposition and representation of each component depend on the choice of ranking on derivatives.
We will discuss how to make the representation unique, namely:

e A prime decomposition uniquely determined by the radical differential ideal can be computed by extending the
algorithm for testing inclusion of quasi-algebraic sets proposed by W. Sit.
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e The canonical characteristic set of a prime differential ideal can be obtained by imposing restrictions proposed
by F. Boulier et al. We list some of its properties.

e In particular, the canonical characteristic set defines a differential analogue of the Grobner cone. This will lead
us to an algorithm that computes a ranking-independent universal characteristic decomposition of a radical
differential ideal.

Local Differential Galois Group and Adjoint Representation

Elie Compoint and fAnne Duval
Cité Scientifique, UFR de mathématiques, 59655 Villeneuve d’Ascq, France (Tduval@math.univ—lillelAfr)

We construct a (generally) maximal torus containing the exponential torus and develop an algorithm to reduce the
weight subspaces of dimension higher than 1 to root subspaces. We also study the regularity of the exponential torus
in the local differential Galois group.

Iterative g-Difference Galois Theory
A Preliminary Report

Charlotte Hardouin
IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany (charlotte.hardouin@gmail.com)

From the beginning, the Galois theory of g-difference equations has been built for g not equal to a root of unity. This
choice was made in order not to increase the field of constants to a transcendental field. However Peter Hendricks
has studied this problem for ¢”* = 1 in his Ph. D. work under the supervision of Marius van der Put. He built a fiber
functor from the category of g-difference modules over C(z) with value in the category Vectc(,m) of vector spaces of
finite dimension over C(z™). But this construction is not totally satisfying and to stay in the spirit of Kolchin, we
do not want to have such transcendental base fields for Galois groups.

For ¢-difference theory, the problem is not the characteristic but the roots of unity. Inspired by the work of
B. H. Matzat and Marius van der Put for differential Galois theory in positive characteristic, we consider also a
family of iterative difference operators instead of considering just one difference operator, and by this way we avoid
increasing the constant field, succeed to set up a Picard-Vessiot Theory for g-difference equations where ¢ is a root
of unity, and relate it to a Tannakian approach.

Patching and Differential Galois Groups
A Preliminary Report

iDavid Harbater and fJulia Hartmann
iDept. of Math., University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104-6395
1-IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany ( Jrjulia.haurtmamn@iwr.uni—heidelberg.de)

Patching methods (building a global object by building it locally) are an important tool for solving inverse problems
in classical Galois theory. In this talk, we describe a new formulation of patching over fields, which can be used to
patch differential modules. We explain applications to the realization of differential Galois groups.
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Differential Central Simple Algebras
and Non-Commutative Picard-Vessiot Cocycles

"Lourdes Juan and *Andy R. Magid
TDept. of Math., Texas Tech University, Box 1042, Lubbock, TX 79410
iDept. of Math., University of Oklahoma, Norman, OK 73019 (Tlourdes.juan@ttu.edu)

Let K be a differential field of characteristic zero with algebraically closed subfield of constants C'. A differential
central simple algebra, and in particular a differential matrix algebra, over K is trivialized by a Picard-Vessiot exten-
sion E of K. This yields a bijection between isomorphism classes of differential algebras and Picard-Vessiot cocycles
ZYG(E/K), PGL,(C)) which cobound in Z(G(E/K), PGL,(E)). We will prove these results and illustrate how
the differential Brauer group of an algebraically closed field can be non trivial.

PGLj3 as a Differential Galois Group

Arne Ledet
Dept. of Math. and Stat., Texas Tech University, Lubbock, TX (arne.ledet@ttu.edu)

A Picard-Vessiot extension M /K with differential Galois group G is the function field of a G-torsor. The G-torsors are
classified by the non-Abelian cohomology H!(K,G). In cases where this cohomology can be suitably ‘parametrised’,
this allows us to describe the structure of the Picard-Vessiot extensions. This approach will be illustrated in the case
of the projective linear group PGLs.

Jacobi’s Work on Normal Forms of Differential Systems
A Preliminary Report

Francgois Ollivier
LIX, Ecole polytechnique, 91128 Palaiseau CEDEX, France (francois.ollivier@lix.polytechnique.fr)

In 1866 was first published Jacobi’s posthumous paper The reduction to normal form of a non-normal system of
differential equations (in Latin). A method is given there to compute a normal form of a system P; = 0, using a
minimal number ¢; of derivatives of P;. The given bound is generically true and sharp. The ¢; may be computed
using the algorithm Jacobi gave to compute “Jacobi’s bound” on the system order, a forgotten ancestor of Kuhn’s
Hungarian method for the assignment problem (1955).

He also provides a generic method to eliminate all variables except one, using again as few derivatives as possible,
a very interesting result for improving the algorithmic complexity of a resolvent computation.

These are described using the formalism of differential algebra in order to give precise proofs following Ja-
cobi’s ideas. The content of some unpublished part of manuscript I1I/13b (Jacobis Nachlal, Archiv der Berlin-
Brandenburgischen Akademie der Wissenschaften) will also be presented. Jacobi considers there the more general
problem of finding all possible normal forms for a given system, giving precise conditions for a system of order n in
two variables to have less than n + 1 possible normal forms (or characteristic sets) for all orderings.
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Dimension of Difference Field Extensions

Alexander B. Levin
Dept. of Math., The Catholic University of America
620 Michigan Ave, NE, Washington, DC 20064 (levin@cua.edu)

In this talk we consider properties of main dimensional characteristics of a finitely generated difference field extension:
difference dimension polynomials and the limit degree of the extension. In particular, we show that if the difference
transcendental degree of a finitely generated difference field extension G/F is zero, then G contains a subfield H such
that the extension G/H is algebraic and H is a finitely generated difference field extension of F with respect to a
smaller set of basic translations. We also discuss the relation of the limit degree to the problem of compatibility of
difference field extensions.

Subfields of the Complete Picard-Vessiot Closure of a Differential Field
A Preliminary Report

Andy R. Magid
Dept. of Math., University of Oklahoma, 601 Elm Room 423, Norman, OK 73019 (amagid@ou.edu)

The Picard—Vessiot closure (E); of a differential field E (differential fields always assumed to have algebraically closed
characteristic zero field of constants) is the compositum of all its Picard—Vessiot extensions. If F' is a differential
field, its complete Picard—Vessiot closure Fi is U;»oF; where Fy = F and F;11 = (F;)1. There is a semi-Galois
correspondence between all differential subfields of F,, over F' and subgroups of the group G of all differential
automorphisms of Fi, over F. We characterize the (differentially) finitely generated subfields of F, (containing F').

Standard Bases in Differential Algebra

Eugueny V. Pankratiev
Dept. of Mechanics and Math., Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russia (epankrat@gmail.com)

Constructive methods in rings of differential polynomials are connected, first of all, with characteristic sets of dif-
ferential ideals whose theory was developed by Ritt and Kolchin for prime differential ideals. Later it had been
extended to a larger class of perfect differential ideals.

In the case of linear partial differential polynomials, this theory may be treated as the theory of Grobner bases of
differential modules, to which all methods and approaches of commutative Grobner bases are applicable, in particular,
the theory of staggered bases by Gebauer and Moller. Specifying some parameters in their algorithm, we obtain
Janet’s bases, a particular case of involutive bases.

Ollivier and Carra-Ferro proposed a definition of standard bases of differential ideals based on admissible orderings
of differential monomials. Unfortunately, this basis is infinite for most of differential ideals (e.g., the ideal [y?]).
Investigations in this area had been suspended for a long time.

Zobnin discovered that these bases become finite if, instead of the lexicographic ordering, we consider other
orderings of differential monomials. This fact revived the interest in this subject and initiated the study of orderings
of differential monomials.

92



William Sit

Differential Equations and Frobenius Structures

B. Heinrich Matzat
IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany (matzat@iwr.uni-heidelberg.de)

The (strong) Frobenius structure for differential equations was introduced by B. Dwork for p-adic differential equa-
tions. In the case of positive characteristic the existence of a (strong) Frobenius structure is equivalent to the
finiteness of the differential Galois group. This fact can be used, for example, to construct additive polynomials with
given Galois group and to develop algebraicity criteria in characteristic zero.

A Generalization of the Riemann-Hilbert Problem
Claude Mitschi

Institut de Recherche, Mathématique Avancée, 67000 Strasbourg, France (mitschi@math.u-strasbg.fr)

We discuss the existence of systems of linear ordinary differential equations with coeflicients in C(z) that satisfy
generalized monodromy data at prescribed, possibly irregular, singularities. This inverse problem reduces to the
classical Riemann-Hilbert problem if all the singularities are required to be Fuchsian, and to the Birkhoff standard
form problem if there are exactly two, one of which Fuchsian, prescribed singularities. This generalized Riemann-
Hilbert problem is naturally related to the inverse problem in differential Galois theory over C(z) as far as one is
concerned with the Poincaré rank of the singularities. The talk presents joint work with Stéphane Malekthe and the
late Andrey A. Bolibrukh.

O-Minimality and Quantifier Elimination in Some

Non Quasi-Analytic Classes
A Preliminary Report

Alexandre Rambaud
Equipe de Logique Mathématique, UFR de Mathématiques, Université Paris 7, France and
Institut de Mathématiques, Avenue du champ de Mars, 6, 7000 Mons, Belgium (alexandre.rambaud@umbh.ac.be)

I extend the results of [R1] which deal with classes of restricted real quasi-analytic functions, to classes of non
quasi-analytic functions.

More precisely, in [R1] only classes of functions, C*° on a whole compact box of R” and quasi-analytic on this
box, were considered. Now, we study some well-closed classes of functions, C*° on an open bounded box, continuous
on the closure of this box and which satisfy a condition of non-degeneration (equivalent to quasi-analycity in the
former case), expressed via model theory. For example, certain of these classes come from solutions of differential
equations.

I obtain, like in [R1], results of o-minimality (which generalize for example those of [vdDS]) and of quantifier
elimination, which imply in particular, preparation theorems in the considered classes.

[vdDS]: L. van den Dries and P. Speissegger, ” The real field with convergent generalized power series”, Trans. Amer.
Math. Soc., 350 (1998), 4377-4421.

[R1]: A. Rambaud, ”Quasi-analycité, o-minimalité et élimination des quantificateurs”, Ph.D. thesis, Université Paris
7, 2005.
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Tannakian Formalism for Linear Differential Algebraic Groups

Alexey Ovchinnikov
Dept. of Math., North Carolina State University, Box 8205, Raleigh, NC 27695-8205 (aiovchin@ncsu.edu)

Tannaka’s Theorem states that a linear algebraic group G is determined by the category of finite dimensional G-
modules and the forgetful functor. We extend this result to linear differential algebraic groups by introducing a
category corresponding to their representations and discuss how this category determines such a group.

We also provide conditions for a category with a fiber functor to be equivalent to the category of representations of
a linear differential algebraic group. This generalizes the notion of a neutral Tannakian category used to characterize
the category of representations of a linear algebraic group.

A Theorem of Sit

"Wai Yan Pong and Matthias Aschenbrenner
iDept. of Math., Stat., and C. Sc., University of Illinois at Chicago, 851 S. Morgan St. (M/C 249) Chicago, IL 60607-7045
JrDept. of Math., California State University Dominguez Hills, 1000 E. Victoria Street, Carson, CA 90747 (Twpong©csudh.edu)

In 1975, Sit showed that the set of Kolchin (dimension) polynomials is well ordered by eventual dominance. We will
give an order-theoretic proof of this theorem and consider its applications in the model theory of differential fields.

Factorization in Skew Polynomial Rings

Yang Zhang
Department of Mathematical Science, DePaul University, Chicago, IL 60614 (yzhang24@depaul.edu)

Efficient algorithms are presented for factoring polynomials in the skew polynomials over complex number field and
quantum planes.

Spectra of Rings Differentially Finitely Generated over a Subring
Dmitry Trushin

Dept. of Mechanics and Math., Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russia (trushindima@yandex.ru)

We consider differential rings that are algebras over the field of rational numbers. We present some ideas that are
useful for investigation of such rings.

One of them uses the relation between the spectrum of an arbitrary differential ring and its differential spectrum.
We consider pairs of properties. One of them characterizes the spectrum and the other one does it for the differential
spectrum. If the first property holds, the other one is satisfied as well. The described pairs of properties allow us to
reduce the study of a differential ring to the study of this ring considered as an ordinary ring.

To prove a theorem describing the structure of differential integral domains differentially finitely generated over
a subring, we apply results about characteristic sets of differential ideals of the ring of differential polynomials over
an integral domain.
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The main proved theorems enable us to reduce the proof of propositions in differential algebra to the proof of
some propositions of commutative algebra. We distinguish a very dense subset of spectrum with good properties and
discuss analogues of differential algebraic varieties. Also, as an illustration of the presented method, some analogues
of geometric theorems are proved without using the universal field.

Analytic ¢-Difference Equations, Universal Rings,
and Universal Galois Groups
Marius van der Put
Dept. of Math., University of Groningen, P.O.Box 800, 9700 AV Groningen, Netherlands (mvdput@math.rug.nl)

Let ¢ be a complex number satisfying 0 < |g| < 1 and let K = C({z}) be the field of the convergent Laurent series.
The automorphism ¢ of K given by ¢(z) = gz makes K into a difference field. A difference module is a finite
dimensional vector space over K, provided with a bijective map ® satisfying ®(f - m) = ¢(f) - ®(m). A difference
module has a Picard-Vessiot ring and a (difference) Galois group.

One also considers difference modules over the difference field of the formal Laurent series K = C((z)). For
the latter category of modules we will give an explicit description of the universal difference ring and its universal
Galois group. For the category of the difference modules over K we present a tentative description of the universal
difference ring and its corresponding universal Galois group.

Symbolic-Numeric Computation of Implicit Riquier Bases for PDE

"Wenyuan Wu and Greg Reid
Dept. of Appl. Math., University of Western Ontario, London, Ontario N6A5B7, Canada (TWWUQE)@HWO.CEL)

Riquier Bases for systems of analytic PDE are, loosely speaking, a differential analogue of Grobner Bases for poly-
nomial equations. They are determined in the exact case by applying a sequence of prolongations and eliminations
to an input system of PDE.

We present a symbolic-numeric method to determine Riquier Bases in implicit form for systems which are domi-
nated by pure derivatives in one of the independent variables and have the same number of PDE and unknowns.

The method is successful provided the prolongations with respect to the dominant independent variable have a
block structure which is uncovered by Linear Programming and certain Jacobians are non-singular when evaluated at
points on the zero sets defined by the functions of the PDE. For polynomially nonlinear PDE, homotopy continuation
methods from Numerical Algebraic Geometry can be used to compute approximations of the points.

We give a differential algebraic interpretation of Pryce’s method for ODE, which generalizes to the PDE case. A
major aspect of the method’s efficiency is that only prolongations with respect to a single (dominant) independent
variable are made, possibly after a random change of coordinates.

Grobner Bases in Difference-Differential Modules and Their Applications

Franz Winkler
RISC, J. Kepler Universitat, A-4040 Linz, Austria (Franz.Winkler@jku.at)

Recently we have introduced a construction of Grébner bases for difference-differential (d-d) modules, based on a new
concept of generalized term ordering for exponent vectors over the integers. We further investigate the key concept of
S-polynomial for such difference-differential bases. We also apply the method to compute the difference-differential
dimension polynomial of a d-d module and of a system of linear partial difference-differential equations. This is joint
work with M. Zhou of Beihang University in Beijing.
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Abstracts of the Second International Workshop on
Differential Algebra and Related Topics

Rutgers University at Newark
April 12-13, 2007

Communicated by
William Sit

Dept. of Math., The City College of The City University of New York (wyscc@sci.ceny.cuny.edu)

The Second International Workshop on Differential Algebra and Related Topics will be held on April 12-13, 2007
at the Newark Campus of Rutgers, the State University of New Jersey, USA. It is jointly organized by the Department
of Mathematics and Computer Science at Rutgers University at Newark, and the Kolchin Seminar in Differential
Algebra of the City University of New York. The abstracts of the tutorial talks to be presented at the Workshop
are given below, in alphabetical order by speaker. Interested (especially women, minority, or junior) researchers are
encouraged to participate and funding is available. For further information, please visit the site below.

http://newark.rutgers.edu/~1liguo/DARTII/diffalg.html

Overview of Baxter Algebras

Marcelo Aguiar
Dept. of Math., Texas A & M University, College Station, Texas 77843 (maguiar@math.tamu.edu)

We discuss old and recent results on Baxter algebras, from work of Cartier and Rota in the 60’s to current work of
Guo and others. We will touch on topics such as Spitzer’s identity, Loday’s dendriform algebras, and the Yang-Baxter
equation, among others.

The Painlevé Equations—Nonlinear Special Functions

Peter A. Clarkson
Institute of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, Kent, CT2 7NF, United Kingdom
(P.A.Clarkson@kent.ac.uk)

The six Painlevé equations (P1—Pv1) were first discovered around the beginning of the twentieth century by Painlevé,
Gambier and their colleagues in an investigation of nonlinear second-order ordinary differential equations. Recently
there has been considerable interest in the Painlevé equations primarily due to the fact that they arise as reductions
of the soliton equations which are solvable by inverse scattering. Although first discovered from strictly mathematical
considerations, the Painlevé equations have arisen in a variety of important physical applications including statisti-
cal mechanics, random matrices, plasma physics, nonlinear waves, quantum gravity, quantum field theory, general
relativity, nonlinear optics and fibre optics. Further the Painlevé equations may be thought of a nonlinear analogues
of the classical special functions.

In this lecture I will give an introduction to the Painlevé equations. In particular I shall discuss many of the
remarkable properties which the Painlevé equations possess including connection formulae, Backlund transformations
associated discrete equations, and hierarchies of exact solutions.
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Hopf Algebras of Labeled Trees and
Some Associated Differential Algebra Structures

Robert Grossman
Dept. of Math., Stat., and C. Sc., University of Illinois at Chicago, 851 S. Morgan St. (M/C 249) Chicago, IL 60607-7045 (grossman@uic.edu)

It is well known that the vector space spanned by rooted trees forms a Hopf algebra. We survey several such Hopf
algebras and describe some of the their duals. In particular, we consider Hopf algebras H of trees that are labeled by
derivations in Der(R). Here k is a field, R is a commutative k-algebra, and Der(R) is the Lie algebra of derivations
of R.

We describe a construction that gives R an H-module algebra structure and show this induces a differential
algebra structure of H acting on R. The construction extends the notion of a R/k-bialgebra introduced by Nichols
and Weisfeiler.

This is joint work with Richard Larson.

The Complete Picard-Vessiot Closure of the Constants
Andy R. Magid
Dept. of Math., University of Oklahoma, 601 Elm Room 423, Norman, OK 73019 (amagid@ou.edu)

The compositum of all the Picard-Vessiot extensions of a given base differential field, unlike the algebraic closure of
the field, may itself have proper Picard-Vessiot extensions. Iterating this, in general countably many times, produces
a differential field that has no proper Picard-Vessiot extensions, and is minimal over the base with this property. This
field is called the complete Picard-Vessiot closure. Its group of differential automorphisms over the base controls the
differential subfield structure, even though the group is not (pro)algebraic and the correspondence is not a full Galois
connection. We will focus on the natural special case when the base field is the (algebraically closed, characteristic
zero) field of constants.

Model Theory and Differential Algebra

David Marker
Dept. of Math., Stat., and C. Sc., University of Illinois at Chicago, 851 S. Morgan St. (M/C 249) Chicago, IL 60607-7045

(marker@math.uic.edu)

Many model theoretic phenomena arise naturally in differntial fields. We will describe some model theoretic questions
that lead to interesting questions in differential algebraic geometry.

Differential Galois Theory in Positive Characteristic
An Introduction
B. Heinrich Matzat
IWR, University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany (matzat@iwr.uni-heidelberg.de)

We will give an introduction to differential Galois theory in positive characteristic and explain interrelations between
Picard-Vessiot extensions in positive characteristic and in characteristic zero. The lecture summarizes work of
M. van der Put and the speaker.
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Computable Model Theory and Differential Algebra

Russell G. Miller
Dept. of Math., Queens College (CUNY), 65-30 Kissena Blvd., Flushing, New York 11367 (Russell.Miller@qc.cuny.edu)

Model theory is the study of mathematical structures and the extent to which they can be described by statements
and formulas. Computable model theory considers the effectiveness of results in model theory: whether they can
actually be given or realized by algorithms. For example, a computable field is a field F' in which the basic operations
of addition and multiplication can be computed algorithmically, and one can then ask whether there exists a splitting
algorithm for deciding whether a given polynomial in F[X7, ..., X,] is reducible there.

We will give a tutorial in computable model theory, oriented towards results on fields and towards an audience
with no serious background in either computability or model theory. Differential algebra is a natural subject for
study by computable model theorists, yet there are precious few results for computable differential fields. (It should
be understood that this is not the same thing as computational differential algebra, although there certainly should
be some relation between the two.) As an example, we will describe Rabin’s well-known result that every computable
field F' has a computable algebraic closure, but that F itself can be a computable subfield of the algebraic closure if
and only if there is a splitting algorithm for F[X]. One would expect some sort of analogous result for computable
differential fields and their differential closures, yet to the speaker’s knowledge, no such work has been done.

Computable model theory has always restricted itself to countable structures, since the natural domain for
computability is the natural numbers. However, we will present work by the speaker which also considers certain
uncountable structures S, called locally computable structures, by effectively describing the finitely generated sub-
structures of S, rather than giving a global description of S. This concept was only recently developed and has not
as yet been widely applied, but fields and differential fields are natural choices for its use.

Introduction to Symbolic-Numeric Completion Methods for PDE

Greg Reid
Dept. of Appl. Math., University of Western Ontario, London, Ontario N6A5B7, Canada (reid@uwo.ca)

Differential elimination methods apply a finite sequence of differentiations and eliminations to general systems of
PDE to extract potent information about their solutions. Much recent progress has been made in the design and
implementation of exact algorithms, applying to exact input sytems, by researchers such as Boulier, Hubert, Mansfied,
Seiler, Wittkopf and others. Though powerful, such methods cannot be applied to approximate systems, since the
strong underlying use of rankings of partial derivatives often induces instability, by forcing such methods to pivot on
small quantities.

The talk will be an introduction to the new area of symbolic-numeric methods for completion of PDE. Main
features include the focus on geometric methods and the use of Homotopy continuation methods for the detection of
new constraints by slicing varieties in jet space with random hyperplanes. Our most recent work on this topic will
be presented by Wenyuan Wu at the related AMS Special Session on Differential Algebra.
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Differential Dependence and Differential Groups

Michael F. Singer
Dept. of Math., North Carolina State University, Box 8205, Raleigh, NC 27695-8205 (singer@math.ncsu.edu)

I will develop a Galois theory of linear difference equations where the Galois groups are linear differential groups.
These groups measure the differential dependence among solutions of linear difference equations. We will show how
this theory can be used to prove anew Holder’s Theorem that the Gamma function satisfies no differential polynomial
equation, Hardouin’s recent results concerning differential dependence of solutions of first order difference equations
and new results concerning differential dependence of solutions of higher order difference equations.

Solving Linear Differential Equations

Marius van der Put
Dept. of Math., University of Groningen, P.O.Box 800, 9700 AV Groningen, Netherlands (mvdput@math.rug.nl)

We concentrate on linear differential equations (or differential modules) over the differential field C(z). The theme,
probably introduced by L. Fuchs, is to solve a differential equation in terms of equations of lower order. This problem
has led to the highly interesting paper of G. Fano (1900). The work of M. F. Singer opened a new perspective on
this theme. We continue this direction and apply the powerful theory of representations of semi-simple Lie algebras
in order to obtain a systematic way for solving the problem. This involves differential Galois theory, Tannaka theory,
simple algebraic groups and it leads to algorithms.

Solving Second and Third Order Linear ODE’s
in Terms of Special Functions

Mark van Hoeij
Dept. of Math., Florida State University, Tallahassee, FL 32306 (hoeij@math.fsu.edu)

In this talk an algorithm will be presented for solving any second or third order linear ordinary differential equation
with rational function coefficients that is solvable in terms of Bessel, Kummer, or Whittaker functions.

Acknowledgement. The organizers of this Second International Workshop on Differential Algebra and Related
Topics (DART-II) gratefully acknowledge partial funding from the National Security Agency, the National Science
Foundation, and various offices at the Newark Campus of Rutgers, The State University of New Jersey. Additional
funding sources, when confirmed, will be acknowledged in the Workshop program.
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AMS Special Session: Computational Algebraic and Analytic Geometry
for Low-dimensional Varieties

Communicated by
Mika Seppaléd, Tony Shaska, Emil Volcheck

We are pleased to present abstracts from the AMS special session titled “Computational Algebraic and
Analytic Geometry for Low-dimensional Varieties” held on January 8, 2007 at the AMS/MAA Joint
Mathematics Meetings in New Orleans. We wish to thank the authors and the AMS for their permis-
sion to communicate these abstracts here. For more information on this series of special sessions, visit
http://www.AlgebraicCurves.net/ .

The 100th Anniversary of the Uniformization Theorem
Peter Buser (EPFL Lausanne) and Mika Seppéld (Florida State University)

The Uniformization theorem states that every Riemann surface is universally covered by the unit disc,
the complex plane or the sphere. This classical theorem has an extremely interesting history. It begins
with Riemann’s remarkable thesis in 1851 in which not only the concept of a Riemann surface is created
but in which we also find the famous Riemann mapping theorem, stating that every bounded simply
connected domain in the complex plane is conformally equivalent to the unit disc. For a proof Riemann
used the so-called Dirichlet principle which at that time was motivated by physical evidence and which
soon afterwards was criticized by Weierstrass as standing on insecure mathematical grounds. Finding a
correct proof challenged many a famous mathematician like Schwarz, Klein, Poincaré and Hilbert. At the
same time the concept of a Riemann surface evolved and the (yet to prove) Riemann mapping theorem
gradually became the Uniformization theorem. In 1906 the Finnish mathematician Severin Johannson used
Harnack’s inequality to prove the Uniformization theorem under a certain technical hypothesis. Koebe and
Poincaré immediately recognized Harnack’s inequality as being the number one missing tool in all that
preceded and published, independently of each other, a complete proof in 1907. Today we connect the
Uniformization theorem with many other famous mathematicians like Ahlfors, Bers or Lehto. And there
is still a challenge: Prove an explicit version! This seems to be possible only with numerical and symbolic
computational tools and there is much ongoing research in this direction.

The Rees Algebra and the Moving Curve Ideal
David A. Cox (Amherst College)

The method of moving curves was introduced by Sederberg and Chen in 1995 and has been used to solve the
implicitization problem. When one considers all moving curves that follow a given curve parametrization,
one gets the “moving curve ideal.” This ideal is of great interest in commutative algebra, when it is called
the “ideal of relations defining the Rees algebra”. This talk explored two aspects of this ideal:
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First, for most degree four parametrizations, it is possible to construct explicit minimal generators for the
moving curve ideal. There are two moving lines of degree two in the parameters, two moving conics of
degree one in the parameters, and the implicit equation. Furthermore, these generators are easily computed
from the two moving lines using determinants Jouanolou calls “Sylvester forms.” The proofs involve local
cohomology and local duality.

Second, suppose we have a parametrized curve C' of degree n. The classical method to uniformize C' uses
adjoint curves of degrees n — 1 or n — 2. Sendra observed that these curves lie in the moving curve ideal
of the parametrization. The conjecture is that all linear systems (meaning degree one in the parameters)
of moving curves of n — 1 or n — 2 consist of adjoint curves. Since adjoint curves are defined in terms of
the singularities of (', this indicates an interesting relation between the singularities of C' and the moving
curve ideal.

Endomorphism Algebras of Abelian Varieties
Arsen Elkin (Colorado State University) and Yuri Zarhin (Pennsylvania State University)

We discuss determination of the absolute endomorphism algebras of abelian varieties by examining the
interaction of the action of these algebras and the Galois action on various modules associated with abelian
varieties, such as prime-order torsion, Tate modules. In particular, we consider abelian varieties X of
dimension (¢—1)/2 in which the image of the Galois representation on the 2-torsion module X3 is isomorphic
to PSL(2, q), where ¢ = £3 (mod 8), and the algebra of Fa-endomorphism of X5 that are Galois invariant is
isomorphic to Fy. This implies that the Galois action on the 2-torsion is simple, but not absolutely so, over
[Fy. The subalgebras of Endy, (X2) that are Galois stable and contain the identity automorphism can then
be categorized, and, as a result, so can be the images of the action of the ring of absolute endomorphism
on X2.

Examples are drawn from Jacobian varieties .J(C) of hyperelliptic curves C : 2 = f(z) in characteristic
different from 2 with deg(f) = ¢ + 1 and the Galois group of the splitting field of f(z) is isomorphic to
PSL(2, q). For example, if such a jacobian has genus 2 and admits multiplication by an order of discriminant
congruent to 5 modulo 8 of a quadratic field D over the base field, then the absolute endomorphism algebra
of J(C) is either D itself, or the characteristic p of the base field is positive and X = J(C) is supersingular.
The latter outcome can be ruled out if p splits in D by lifting the representation of PSL(2,q) on Xs given
by the Galois action to a representation on the 2-adic Tate module.

Suppose we restrict ourselves to characteristic 0, but allow the dimension to vary. There exists the surjective
homomorphism (the restriction) from the Galois group of the 4-division field to the Galois group of the
2-division field over the base field. Consideration of a lifting of this homomorphism allows us to show that
X is either absolutely simple, in which case its algebra of absolute endomorphisms is isomorphic to Q or a
quadratic field, or ¢ = 3 (mod 8) and X is absolutely isogenous to a self-product of an elliptic curve with

complex multiplication by Q(v/—¢q).

Linear precision for parametric patches
Luis D. Garcia-Puente (Texas A&M University) and Frank Sottile (Texas A&M University)

In this paper, we discuss a specific topic on geometric modelling, which is the science of modeling curves,
surfaces, and higher-dimensional objects by small patches (e.g., Bézier patches). We present a character-
ization of one important property, linear precision, for multi-sided parametric patches of any dimension.
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We show that every parametric patch has a unique reparametrization which has linear precision and we
give a geometric criterion for when this reparametrization is rational. We apply this criterion to show that
the classical Bézier simploids are the only toric patches based on products of simplices which have linear
precision. We also present a simple numerical algorithm to compute the parametrization of a toric patch
having linear precision, and apply our analysis to barycentric coordinates for polytopes.

The p-torsion of hyperelliptic curves with extra automorphisms
Darren B. Glass (Gettysburg College)

We examine the relationship between the automorphism group of a hyperelliptic curve defined over an
algebraically closed field of characteristic p and the p-rank of the curve, which measures the number of
p-torsion points in the Jacobian of the curve. In the case where p = 2, we use results of Deuring and
Shafarevich to exploit the wild ramification found when dealing with hyperelliptic curves and use this
data to show how ‘extra’ automorphisms impose restrictions on the genera and 2-ranks of such curves.
In particular, for given numbers g and f we are able to describe all possible automorphism groups of
hyperelliptic curves with genus ¢ and 2-rank f. In the case where our base field is of characteristic p > 2
these methods are not as robust, but we are able to show some restrictions on the extra automorphisms
that may occur for hyperelliptic curves given genera and p-ranks.

Simultaneous Surface Resolution in Cyclic Galois Extensions
Nan Gu (Purdue University)
(joint work with Shreeram S. Abhyankar)

The problem of Simultaneous Resolution asks the following: given a finite algebraic field extension L of
an n-dimensional algebraic function field K/k, can we find non-singular projective varieties X and Y with
function fields respectively K and L, such that Y is the normalization of X in L? We showed that this
is not always possible when n = 2 and L/K has Galois group Z, where ¢ is divisible by a prime square.
Using a theorem of Harbater and Pop, the result can be extended to the cases when the Galois group of
L/K is H ® Z,, where H is any finite group. The key part of the construction is a lemma to compute the
integral closure explicitly of a local domain R in a finite cyclic field extension of its quotient field. It is
also noted in the talk that a refinement of this computational lemma actually extends the result to H @ Z,
where ¢ is any integer greater than 3.

Syzygies of toric varieties
Milena S. Hering (IMA), Henry Schenck (Texas A&M University) and Gregory Smith (Queen’s)

We study the equations defining a projective variety and the higher syzygies between them using multi-
graded regularity as introduced by Maclagan and Smith. As an application, we obtain a sufficient condition
for the power of an ample line bundle on a toric variety guaranteeing that the corresponding embedded
variety is projectively normal and generated by quadratic equations, and that the first p syzygies are linear.
This technique also yields new results for the syzygies of Veronese-Segre embeddings.

For more information see http://front.math.ucdavis.edu/math.AG/0502240
and my thesis http://www.ima.umn.edu/~hering/thesis.pdf
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Theta Constant Identities for Jacobians of Cyclic 3-Sheeted Covers of the Sphere and Representations of
the Symmetric Group

Yaacov Kopeliovich

We find identities between cubic powers of theta constants with rational characteristics evaluated at the
period matrix of g, for R a cyclic 3-sheeted cover of the sphere with 3k branch points Aj,..., A3x. These
identities follow from the Thomae formula. This formula expresses sixth powers of theta constants as
polynomials in Ay, ..., Agx. We apply the representation of the symmetric group to find relations between
the polynomials and hence relations between cubic powers of the associated theta constants.

Curves generated on surfaces by the Gilman-Maskit algorithm
Vidur Malik

The Gilman-Maskit algorithm determines whether or not two elements of PSL(2,R) generate a non-
elementary discrete group. Gilman-Keen reinterpreted the algorithm as an unwinding and winding of
curves about each other when the group was discrete, but did not contain any elliptic or parabolic ele-
ments. Here we examine the behavior of the winding and unwinding of the curves in the general case,
including the orbifold case. We show that elliptic generators create curves that are self-wound and modify
the Gilman-Keen formula to account for these self-windings. In doing so we distinguish between an alge-
braically primitive elliptic element, say A, which may not be geometrically primitive and its self-wound
counterpart A? which is both algebraically and geometrically primitive.

Equations for the space of rational curves on the Lagrangian Grassmannian
James Ruffo (Texas A&M University)

Spaces of curves in algebraic varieties are important objects of interest in algebraic geometry. They are
typically non-compact, and compactifications are introduced to facilitate their study. Drinfel’d defined a
compactification when the curves are rational and the ambient variety is a homogeneous space, called the
space of quasi-maps. This variety has applications to geometric representation theory, quantum cohomol-
ogy, and for Grassmannians, linear systems theory. We study the space of quasi-maps for the Lagrangian
Grassmannian, describing the generators of its ideal in a natural projective embedding. The form of this
generating set yields interesting geometric consequences, which we describe.

Efficient Divisor Arithmetic on Hyperelliptic Curves: Cantor Versus NUCOMP
Renate Scheidler (University of Calgary) and Andreas Stein (University of Wyoming)

Many problems arising in computational number theory, arithmetic geometry, and cryptography require
fast arithmetic on degree zero divisor of a hyperelliptic curve C over a finite field F,. If C : y*+h(z)y = f(x)
(with h, f € Fy[z]) is a standard nonsingular model of C, then it is easy to determine whether the place
at infinity of Fy(x) is ramified, inert, or split in the function field of C. Then C is said to be imaginary,
unusual, and real, respectively.

In almost all situations, every equivalence class of degree zero divisors on C' defined over I, contains a
unique reduced divisor, allowing for efficient arithmetic in the degree zero divisor class group via reduced
representatives. The only exceptional scenario is when C' is unusual of genus, in which case a given class
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may not contain any reduced divisors, but instead contain ¢ + 1 “almost reduced” divisors. Moreover, in
the real scenario, the exact same divisor class arithmetic techniques can be employed for efficient arithmetic
in the (principal) infrastructure of C'. This structure does not form a group, but it is possible to define a
distance that imposes an order on this set and behaves “almost” additively under addition and subsequent
reduction of infrastructure divisors. As a result, the infrastructure can be used to significantly speed up
computational solutions to a variety of number theoretic problems, such as computing the divisor class
number, and can also be employed as the basis for fast cryptographic protocols.

A unified description of the arithmetic on degree zero divisors for all three hyperelliptic curve models can be
given via continued fraction expansions in a suitable field of Puiseux series. Divisor class and infrastructure
arithmetic is traditionally conducted by first adding two reduced degree zero divisors and subsequently
reducing the result; this is Cantor’s algorithm or derivations thereof. A lesser known, but significantly faster
method is the NUCOMP procedure developed by Shanks in the 1980’s. Shanks introduced NUCOMP (short
for “new composition”) in connection with arithmetic of binary quadratic forms. The algorithm can easily
be generalized to ideal arithmetic in quadratic number fields and divisor arithmetic on hyperelliptic curves.
Our approach was to formulate an optimized version and analyze this method in the unified setting for all
three hyperelliptic curve models.

Cantor’s algorithm has the disadvantage that the addition of two reduced divisors produces a semi-reduced
divisor that is in general not reduced. In fact, with very high likelihood, this semi-reduced divisor has basis
polynomials whose degrees are twice as large as the degrees of the basis polynomials of the original two input
divisors. Therefore, the subsequent reduction step operates on polynomials of doubly large degree. The
idea behind NUCOMP is to eliminate those expensive reduction operations on larger-sized polynomials.
NUCOMP stops the addition process before completion and applies an intermediate recursion which is
equivalent to reduction with the substantial advantage that the occurring quantities are of much smaller
degree. Instead of evaluating the continued fraction expansion of a quadratic irrationality, a rational
approximation of this quadratic irrationality is computed via the extended Euclidean Algorithm. The
smaller operands in NUCOMP then correspond to quantities in the extended Euclidean Algorithm.

Instead of using the rather expensive continued fraction algorithm that produces the aforementioned in-
termediate operands of double size, the reduction is performed again using the much less costly extended
Euclidean Algorithm. The basis polynomials are only computed once the divisor is reduced or almost
reduced. As a result, the sizes of the intermediate operands are significantly smaller, and the divisor
produced by NUCOMP is very close to being reduced.

The conclusion is that our improved formulation of NUCOMP offers performance improvements over
Cantor’s algorithm for even very small genera. Numerical computations provide evidence for the excellent
performance of NUCOMP. These results will have important applications to cryptographic protocols such
as the Diffie-Hellman key exchange protocol or signature schemes based on hyperelliptic curve arithmetic.
In fact, the complexity analysis will show that NUCOMP is a faster way of computing the group operation
or the infrastructure operation in any situation where hyperelliptic curve arithmetic is needed. It remains
to be seen how explicit formulas based on NUCOMP for low genus curves compare to the currently known
best such formulas.

Toric surface codes and Minkowski sums
John Little (Holy Cross) and Henry Schenck (Texas A&M University)

Toric codes are evaluation codes obtained from an integral convex polytope P C R™ and finite field IF,.
They are, in a sense, a natural extension of Reed-Solomon codes, and have been studied recently by
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J. Hansen, D. Joyner, D. Ruano, and others.

We obtain upper and lower bounds on the minimum distance of a toric code constructed from a polygon
P C R? by examining Minkowski sum decompositions of subpolygons of P. Our results give a simple and
unifying explanation of bounds of Hansen and empirical results in Joyner; they also apply to previously
unknown cases. Let d(Cp(F;)) be the minimum distance of the toric code determined by the polygon P.
Our main result is the following:

Theorem: Let [, be a finite field and let P C R? be an integral convex polygon strictly contained in
Og—1. If ¢ > (4i+ 3)? (where i is the number of interior lattice points of P), and ¢ is the largest positive
integer such that there is some P’ C P that decomposes as a Minkowski sum P’ = P, + P, + - - - + P, with
nontrivial P;, then there exists some P’ C P of this form such that

l
d(Cp(Fy)) = > d(Cp,(Fy)) — (£ —1)(g— 1),
=1

In many cases, this bound is tight.

Genus calculations for towers of function fields arising from equations of C,, curves
Caleb M. Shor (Bates College)

The introduction of geometric Goppa codes in the late 1970s has led to an interest in the genera of function
fields over finite fields. We present a large class of function fields arising from the defining equations of
Cap curves and calculate the genera. Instead of using the Hurwitz genus formula, for which one needs to
know about ramification, we instead use the Riemann-Roch theorem to calculate the genus by counting the
number of Weierstrass gap numbers associated to a particular divisor. These function fields are of interest
because the Riemann-Roch spaces of functions associated to certain divisors in these function fields are
easy to calculate, so one can create the associated Goppa codes.

Bernstein—Sato polynomial in low dimension
Darren Salven Tapp (Purdue University)

Let f be a polynomial function on C". In such a case there is a polynomial b¢(s) € C[s] such that

P(s) e [ = by(s)f*,

where P(s) € C(x1,...,Zpn,01,...,0,)[s] = Dy[s] is an operator. Such a bs(s) which is of minimal degree
and monic is called the Bernstein—Sato polynomial of f.

For example we have,
02 0 %12 = (254 2)(2s + 1)z,

and in fact b,2(s) = (s + 1)(s + 3).

It is known bf(s) has negative rational roots greater than —n. The Bernstein-Sato polynomial encodes
certain information about the singularities of f. For example it relates to: an embedded resolution of f,
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Hodge spectrum, Milnor fiber monodromy, Igusa (-functions, multiplier ideals and jumping coefficients
including the log canonical threshold that can be defined as

1
S“p{C‘/BwW}’

where B varies over small balls. We may take these small balls to be centered at 0 € C™ when f is
homogeneous.

An algorithm to compute the Bernstein—Sato polynomial of a polynomial was discovered by Oaku [3]. This
algorithm uses Grobner basis computations in the Weyl algebra D, 2. This is a non-commutative ring
with 2n + 4 variables, and thus the computational complexity is extremely bad. Thus there is a need for
new methods. An example of what is possible is a theorem of U. Walther [2, 4].

Theorem 0.1 (Walther) Let A be a set of k linear forms in n-variables such that any n of them are
independent. Let

f= H L  Then
LeA
2k—n—2 .
+n
by(s) = (s+ 1) ! .
o=t I (o457

This theorem leads us naturally to the question.
Question 0.2 What if we remove the assumption of linear independence?

When n = 2 we consider

f=Lp L (0.1)
where the L; are pairwise linearly independent linear forms. Theoretically computing of bs(s) can be
broken into two parts. First find a polynomial b(s) with bs(s)[b(s). Then verify roots of b(s) are roots of
by(s). For g(s) € Q[s] one may define an ideal a,,) C R with: a1 = (f), Jac(f) C ag41), if ¢(s)[r(s) then
tg(s) € Op(s), and ay,) = R if and only if by (s)|q(s)

Thus we may use computations of this ideal to bound b¢(s). We were able to show:

Theorem 0.3 Let f be as in 0.1, ¥(s) be the least common multiple of the polynomials

(- )

H s+ — 1.

=1 i
Then ke

_l’_ —

042
byt IT (s+ 52 ) = 0.2

=0
where d = deg(f) =m1 +ma + -+ + my.

The result is obtained by using an algorithm to add a factor to ¢(s) as to make ay(s) bigger. We use two
methods to verify that all the roots of the bound are indeed roots: investigating the cohomology of the
Milnor fiber, and computing the jumping coeflicients of f.

Suppose f homogeneous, deg(f) = d, and let F' = V(f — 1) be the Milnor fiber of f, then by [4] there
exists a Z-grading on H'/5(F) = @, U, such that

U, # 0] = [bf (—ﬁ”) :o].
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We use a resolution of singularities of the projective closure of F' to obtain:
Theorem 0.4 Let f be as in (0.1). Then U, #0 fork—3 <r<d+k—4.

This theorem verifies some of the roots of bs(s). In our low dimensional case it is not hard to calculate the
jumping coefficients of f, and this will verify others [1]. Putting these results together we obtain.

Theorem 0.5 Let b(s) be as in (0.2) and assume that

It is expected that the condition on the m’s is not needed for the truth of the conclusion.
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Myrberg Numerical Uniformization of Elliptic and Hyperelliptic Curves
Robert S. Todd (Florida State University)

The numerical uniformization problem for algebraic curves is to find a discontinuous Md&bius group uni-
formizing a given Riemann surface or algebraic curve. Myrberg’s algorithm allows for a numerical approx-
imation of Schottky uniformization of elliptic and some hyperelliptic curves. This method also provides
the possibility of generalization to a larger class of hyperelliptic curves than traditional elliptic curve
uniformization.

The next special session in this series is tentatively scheduled to take place during the 2009 AMS/MAA
Joint Mathematics Meetings in Washington, DC (January 7-10, 2009).
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OSCAS — Maxima

David Joyner*
11-19-2006

At the kind invitation of ACM SIGSAM Chair Emil Volcheck, this will start a series of regular columns
on open source! computer algebra systems. I will consider this series a success if it encourages one of you
to contribute in even a small way (submit a bug report or just an encouraging email to the developers!)
to one of the systems listed below.

A computer algebra system (CAS) is a mathematical software package capable of symbolic manipulation.
The commercial CAS industry is big business. Few people know more about the CAS industry than
Darren McIntyre, VP of Worldwide Sales at Maplesoft. He estimates the worldwide yearly expenditures
on computer algebra (buying licenses, employee salaries, and so on) is at least $ 600 million [Mc]. Clients
include not just students and universities, but diverse industries who often find that a CAS is a convenient

programming environment to model industrial problems.

1 The terrain

Axiom open source http://wiki.axiom-developer.org
CADABRA GPL http://www.aei.mpg.de/ peekas/cadabra/
DoCon open source http://www.haskell.org/docon
GAP GPL http://www.gap-system.org

GIAC GPL http://www-fourier.ujf-grenoble.fr/ parisse/giac.html
GINAC GPL http://www.ginac.de
GTYBALT GPL http://wwwthep.physik.uni-mainz.de/"stefanw/gtybalt/
JScience BSD http://www.jscience.org/
LiDIA | “open source” http://www.cdc.informatik.tu-darmstadt.de/TI/LiDIA/
Macaulay?2 GPL http://www.math.uiuc.edu/Macaulay2/
Magnus GPL http://sourceforge.net/projects/magnus/
MAS | “open source” http://alice.fmi.uni-passau.de/mas.html
Mathomatic LGPL http://mathomatic.orgserve.de/math/
Maxima GPL http://maxima.sourceforge.net
NTL GPL http://www.shoup.net/ntl/

Pari GPL http://pari.math.u-bordeaux.fr

SAGE GPL http://sage.scipy.org
Scilab | ‘open source” http://www.scilab.org
Singular GPL http://www.singular.uni-kl.de
Symmetrica | public domain | http://www.mathe2.uni-bayreuth.de/axel/symneu_engl.html
Yacas GPL http://yacas.sourceforge.net

I have left out CAFE (Computer Algebra and Functional Equations), a group writing a collection of
CAS libraries (see http://www-sop.inria.fr/cafe/main-e.html). They appear to be written in Aldor
and Maple by (the late) Manuel Bronstein. I cannot determine the license (if any) they are released under.

*Address: Mathematics Department US Naval Academy, Annapolis, MD 21402, USA, wdjoyner@gmail.com
!The open source definition is here: http://www.opensource.org/docs/definition.php.
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I am also unsure if the “open source” licenses of LiDIA, MAS, and Scilab are compatible with the above-
mentioned open source definition. Several of these are under very active development and some of these
are essentially dead. Two other sources of information are the Computer algebra handbook [GKW] and
the internet sites [CA].

In any case, we see from this table that there are a lot of open source computer algebra systems out
there. Some of these are special purpose (such as Symmetrica) and others are general purpose (such as
Axiom). We shall start this series by surveying Maxima, a general purpose CAS.

2 Maxima

Maxima is perhaps the most popular general purpose open source CAS. Its latest release (as of November
2006) is 5.10. The next release (Maxima 5.11) is tentatively planned for the beginning of 2007.

2.1 History

The Maxima homepage and the Maxima FAQ (this information is basically due to Stavros Macrakis)
explains some history.

Maxima is a descendant of Macsyma, the legendary computer algebra system developed in the late 1960s
at the Massachusetts Institute of Technology. Symbolics licensed Macsyma from M.I.T. and registered
“Macsyma” as a trademark at some point (presumably with M.I.T.’s permission). When Macsyma source
ceased to be freely available, pressure was put on M.I.T. (mostly by Richard Fateman) to transfer the code
which had been developed largely with Department of Energy (DOE) funding to the DOE, which then
released it to others under certain conditions. That codebase was called DOE Macsyma. DOE-Macsyma,
still available from US Dept of Energy, can be licensed under terms more generous than GPL upon request.

The Maxima branch of Macsyma was maintained by William Schelter from 1982 until he passed away
in 2001. In 1998 he obtained permission to release the source code under the GNU General Public License
(GPL). Since his passing a group of users and developers has formed to bring Maxima to a wider audience.

Pages 8-9 of the Maxima book [Max] has a more detailed history. More Macsyma history can be found
in [GKW].

Figure 1: William Schelter.

2.2 Basics

e website: http://maxima.sourceforge.net/
wiki: http://maxima.sourceforge.net/wiki/

e Documentation:
Online reference manual:
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http://maxima.sourceforge.net/docs/manual/en/maxima.html

(also available in pdf). This has been translated into Spanish and Portuguese.

Maxima tutorials are available in English, Spanish, Portuguese, German, and Italian from the website.
There are also slightly older Maxima documents in French.

There is also an excellent Calculus textbook which uses Macsyma extensively [BI-GJ.

o Interfaces:

— Command line.

— front-end GUIs: xmaxima, wxmaxima (cross platform), TeXmacs (cross platform), Imaxima,
Kayali, Symaxx.

— web interfaces: There are several lists on the page:
http://maxima.sourceforge.net/relatedprojects.shtml

o Awailability:
Source code: Maxima is written in Common Lisp and can be made to compile using either Clisp,
GCL, CMUCL, SBCL, or OpenMCL. It has been compiled on Linux, Windows, Mac OSX, and
FreeBSD machines.
http://maxima.sourceforge.net/wiki/index.php/Maxima%20ports
Binary: It is available as a binary for linux and windows (cygwin not required).

e Support:
There is an active email list:
http://maxima.sourceforge.net/maximalist.html
This list is also used by developers as well.

e License:
GPL. However, Maxima’s graphics uses openmath (which is GPL’d) and gnuplot (which is not
GPLd).

2.3 Active developers

Maxima has a very talented group of active developers. At the present day the major contributors seem to
be Robert Dodier, Barton Willis, Raymond Toy, Stavros Macrakis (especially generating bug reports and
bug fixes), Mario Rodriguez Riotorto (docs and share packages, especially), Vadim Zhytnikov (especially
packaging the Windows build), and David Billinghurst (differential equations). There are also people
working on various projects closely or not-so-closely related — e.g., Andrej Vodopivec (WxMaxima), Camm
Maguire (GCL). Unfortunately, it is not possible in this short column to name everyone involved in Maxima.
However, I hope that this list of active developers provides solid evidence that this CAS continues to grow
and improve.

2.4 Capabilities

Using Maxima, one can manipulate symbolic and numerical expressions, including differentiation, integra-
tion (symbolic and numerical), Taylor series, Laplace transforms, ordinary differential equations, systems
of linear equations, special functions, elliptic functions, polynomials, orthogonal polynomials, sets, lists,
vectors, matrices, and tensors. There are also some probability and statistics functions. Maxima yields
high precision numeric results by using exact fractions, arbitrary precision integers, and arbitrarily preci-
sion floating point numbers. Maxima can plot functions and data in two and three dimensions. Maxima
also has several special-purpose packages, such as for tensor calculus, solving recursive equations, and
summation identities.
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The main page to the reference manual describes the topics in more details
(http://maxima.sourceforge.net/docs/manual/en/maxima.html).

Here is a cool example using Maxima’s plotdf package and openmath (both written by W. Schelter):
To show the direction field of the differential equation v’ = x + y and the solution that goes through
(2,—0.1), use the commands:

(%i1) load("plotdf");
(%12) plotdf(x+y, [trajectory_at,2,-0.11);
(%ho2) 0

This produces the following pretty plot:

> openmath: Plotdf = =] B3
Closel Conflgl Replot | Zoom I Savel Integrate I P\ot\/ersustl Help
(-13.249,-1.938)
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Figure 2: A direction field plot.

2.5 Thanks

I have benefited greatly from emails with Robert Dodier, whom I thank for his generous help. Of course,
only I am responsible for any mistakes. If you have corrections or comments, please email me.
In the next column, we’ll look into Axiom and Aldor. Until then, have fun computing!
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International Symposium on Symbolic and Algebraic Computation
ISSAC 2007

http://www.cs.uwaterloo.ca/issac2007/

University of Waterloo, Waterloo, Ontario, Canada

March 29, 2007

The International Symposium on Symbolic and Algebraic Computation (ISSAC) is the premier annual
conference to present and discuss new developments and original research in all areas of symbolic compu-
tation and computer algebra. This year ISSAC will be held July 29 — Aug 1, 2007 at the University of
Waterloo in Canada. Planned conference activities include invited talks, presentation of original research
papers, poster sessions, tutorial courses and software demonstrations. Proceedings, as well as abstracts
of posters, will be distributed at the conference. The satellite workshops Symbolic-Numeric Computing
(SNC) and Parallel Symbolic Computation (PASCO) will be held at the nearby University of Western
Ontario in the preceding week.

Topics of the ISSAC meeting include (but are not limited to):

Algorithmic mathematics.

Algebraic, symbolic and symbolic-numeric algorithms. Simplification, function manipulation, equa-
tions, summation, integration, ODE/PDE, symbolic and exact linear and multi-linear algebra, com-
putational number theory and group theory, and geometric computing.

Computer Science.

Theoretical and practical problems in symbolic computation and algebraic computation. Systems,
problem solving environments, user interfaces, software, libraries, parallel/distributed computing
and programming languages for symbolic computation, concrete analysis, benchmarking, theoretical
and practical complexity of computer algebra algorithms, automatic differentiation, code generation,
mathematical data structures and exchange protocols.

Applications.

Using algebraic, symbolic or symbolic-numeric computation in an essential or novel way in treating
problems in application areas such as engineering, computer assisted modelling and design, eco-
nomics and finance, physical and biological sciences, computer science, logic, mathematics, statistics,
education.

Conference Organization

General Chair: Dongming Wang (France, China)

Program Chair: Bernard Mourrain (France)

Tutorials Chair: J. Rafael Sendra (Spain)

Local Arrangements: Keith Geddes, Mark Giesbrecht, George Labahn, Arne Storjohann (Waterloo)

Sponsors: The ACM, The Fields Institute, Maplesoft, MITACS and the University of Waterloo.
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SAGE DAYS 3

Communicated by David Joyner

SAGE DAYS 3

UCLA Fegruary [7-21. 2007
HTTP:/IMODULAR MATH WASHINGTON EDU/SAGE

SAGE Days 3 will be held at IPAM (Institute for Pure and Applied Mathematics) at UCLA. Come
to SAGE Days 3 and learn about and help create free open source software for research and teaching in
algebra, geometry, number theory, cryptography, and numerical computation.

Talks that everyone cares about will be in the mornings, and in the afternoons, we’ll have more spe-
cialized talks by the same speakers. In the afternoons, we may also try to organize various tutorials for
those not interested in the specialized talks. Also, the goal is to try to give something of a theme to each
of the two days. We’ll have slightly fewer talks than the last SAGE Days.

The first day will be targeted to people who are not experts on SAGE, which for our purposes, might
mean anyone who isn’t a SAGE Developer, but might like to be. An example of this might be a ”State of
the Union” talk by William in the morning, and a talk on what an undergraduate can do to get involved
with SAGE in the afternoon. If anyone has ideas for good coding projects that undergraduates can get
involved with, let us know.

The second day will be targeted at SAGE Developers. The morning will be talks about things that
everyone needs to hear about, and the afternoon talks will be talks about more specified topics that peo-
ple might be interested in. So, using SD2 for examples again, we’d have David Harvey’s talk on SAGE
Architecture, and in the afternoon, Martin Albrecht’s talk on F4.

Organizing committee: Craig Citro, David Joyner, Kristin Lauter, Nathan Ryan, William Stein (chair)

See http://sage.math.washington.edu/sage/days3 for more details.
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COMPSAC 2007, Call for Papers

Communicated by Atilla Elci

COMPSAC 2007 — 31st Annual International Computer Software and Applications Conference
Beijing, July 24-27, 2007

COMPSAC is a major international forum for researchers, practitioners, managers, and policy makers
interested in computer software and applications. Starting with 2006, COMPSAC is designated as the
IEEE Computer Society Signature Conference on Software Technology and Applications. Based on this
designation COMPSAC organizers are able to work with other key functions of the Computer Society to
create more values for the conference volunteers and participants.

Proposals for workshops are solicited for consideration of affiliation with COMPSAC 2007. Affiliated
workshops will be held in conjunction and co-located with the conference and other affiliated workshops.
The purpose of these workshops is to provide a platform for presenting novel ideas in a less formal and
possibly more focused way than the conference itself. As such, they also offer a good opportunity for young
researchers to present their work and to obtain feedback from an interested community. Workshop organiz-
ers are responsible for establishing a program committee, collecting and evaluating submissions, notifying
authors of acceptance or rejection in due time, and ensuring a transparent and fair selection process, orga-
nizing selected papers into sessions, and assigning session chairs.

Researchers and practitioners are invited to submit a one-page concept paper proposing a workshop to
the 31st COMPSAC Workshop Chair, Atilla Elci atilla.elci@emu.edu.tr, by Dec. 8, 2006. Submission
may be made by e-mail with "COMPSAC Preliminary Workshop Proposal" in the subject header and
supplying data on the Preliminary Workshop Proposal Format. Feedback will be provided to the workshop
proposers by Dec. 15, 2006. An accepted proposal will then be detailed using the Final Workshop Proposal
Format by its organizers. Other important due dates are mentioned below.

The selection of the workshops to be included in the final COMPSAC program will be based upon
several factors, including the scientific / technical interest of the topics, the quality of the proposal, balance
and distinctness of workshop topics, and the capacity of the conference workshop program.

Workshops use the same paper submission system with COMPSAC 2007. Proceedings of the COMP-
SAC Workshops will be printed as a separate volume by IEEE Computer Society Press to be made available
to all conference registrants on site. All workshop papers will as well be electronically available through
IEEE Xplore Digital Database. Any further information needed for preparing a workshop proposal can be
obtained by contacting the COMPSAC Workshop Chair.

For more information please visit the web site http://www.compsac.org/

Issue Date: Oct. 16, 2006.
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Calculemus 2007, Call for Papers

June 27-30, 2007 - RISC Institute - Castle of Hagenberg, Austria

Communicated by Manuel Kauers and Wolfgang Windsteiger

Calculemus is a series of conferences dedicated to the integration of computer algebra systems (CAS)
and automated deduction systems (ADS) towards the development of universal mathematical assistant
systems (MAS).

Currently, symbolic computation is divided into several (more or less) independent branches, traditional
ones (e.g. computer algebra and theorem proving) as well as newly emerging ones (on user interfaces,
knowledge management, theory exploration, etc.). The main concern of the Calculemus community is to
bring these developments together in order to facilitate the theory, design, and implementation of integrated
MAS that will routinely be used by mathematicians, computer scientists, and engineers in their every-day
business.

For the upcoming Calculemus meeting, which will be held jointly with MKM2007 in Hagenberg, Austria,
we seek original research papers in this context.

The scope of Calculemus covers all aspects of developing mathematical assistant systems, in particular,
the interplay of automated reasoning and computer algebra. Potential areas of interest are:

e Automated reasoning in computer algebra e Theory exploration techniques
e Computer algebra in automated reasoning e Theory, design, and implementation of MAS
e Interdisciplinary systems e Case studies and applications of MAS
e Infrastructure for mathematical services
Important Dates: Keynote Speakers:
February 12, 2007: Submission deadline Thomas Hales, University of Pittsburgh
March 12, 2007: Notification of acceptance John Harrison, Intel Inc.
March 26, 2007: Camera ready copies due Peter Paule, RISC-Linz

June 27-30, 2007: Conference

Submission: Please submit your full paper of at most 12 pages prepared with the standard LNCS
class style as .pdf or .ps file electronically on or before February 12, 2007. Detailed formating instructions
can be found on the Calculemus website.

Proceedings: Accepted papers will be published in the LNAI series of Springer.

Program Committee: Alessandro Armando (DIST, Italy), Christoph Benzmiiller (University of
Cambridge, UK), Olga Caprotti (University of Helsinki, Finland), Jacques Carette (McMaster, Canada),
Timothy Daly (Carnegie Mellon, USA), William M. Farmer (McMaster, Canada), Keith O. Geddes (Water-
loo, Canada), Tom Hales (Pittsburgh, USA), Hoon Hong (North Carolina State University, USA), Deepak
Kapur (New Mexico, USA), Manuel Kauers (RISC-Linz, Austria, Chair), Laura Kovacs (RISC-Linz, Aus-
tria), Petr Lisonek (Simon Fraser University, Canada), Roy McCasland (University of Edinburgh, UK),
Renauld Rioboo (Universtite Pierre et Marie Curie, France), Volker Sorge (University of Birmingham,
UK), Klaus Sutner (Carnegie Mellon, USA), Thomas Sturm (University of Passau, Germany), Wolfgang
Windsteiger (RISC-Linz, Austria, Chair).

Further Information: http://www.risc.uni-linz.ac.at/about/conferences/Calculemus2007/
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[SSAC 2005 Awards

Austin Lobo, Chair, ISSAC 2005 Poster Committee
Peter Paule, Chair, ISSAC 2005 Program Committee
Emil Volcheck, Chair, ACM SIGSAM

ACM SIGSAM established the ISSAC Distinguished Paper and Distinguished Student Author Awards in
2002 to recognize excellent work presented at ISSAC and encourage submissions of high quality. At ISSAC
2005 in Beijing, awards were presented in the categories of Distinguished Paper, Distinguished Student
Author, and Distinguished Poster.

Each Distinguished Paper Award is accompanied by a citation that describes the achievements of the
authors in a way that we hope can be understood by non-specialists. For this we have two goals in mind:
first, to explain to a department chair or supervisor why the work of the author(s) deserved recognition, and
second, to communicate progress and excitement in the field of computer algebra to the greater scientific
community.

We would like to thank the Program Committee and the Poster Committee for their careful deliberations
in selecting the award winners. We would also like to thank the members of the Program Committee who
assisted in preparing the award citations.

The Distinguished Paper and Distinguished Student Author awards are funded by an ACM SIGSAM
endowment. Funds for the Distinguished Poster awards are provided by ISSAC.

We thank Maplesoft for their generosity in providing eleven complimentary copies of Maple' 10 to the
award winners.

To read more about the ISSAC awards and guidelines, visit http://sigsam.org/ISSAC_Awards/ .

Distinguished Paper Awards

Two Distinguished Paper Awards were presented at ISSAC 2005. Each carried a prize of USD 400, shared
among the authors.

The first award goes to Erich Kaltofen and Pascal Koiran for their paper “On the Complexity of Factoring
Bivariate Supersparse (Lacunary) Polynomials.” The citation reads as follows:

A primary goal of the field of computer algebra and symbolic computation is to find new
and better ways of computing with mathematical objects. Polynomials are one of the most
fundamental objects in computer algebra, and yet a natural sparse representation can present
seemingly intractable complexity. More specifically supersparse polynomials are polynomials
defined over the rational numbers with relatively few terms whose exponents can be very large
integers. While such polynomials have a compact representation as a sum of non-zero terms,
some fundamental operations that we take for granted as being easy for ordinary polynomials,
such as evaluating at integers, are generally infeasible.
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Kaltofen and Koiran extend results of Hendrik Lenstra, Jr. for supersparse polynomials from the
univariate to the bivariate case: they exhibit algorithms that can find all linear and quadratic
factors of supersparse polynomials in polynomial time. They succeed by fusing classical com-
puter algebra techniques of interpolation and modular reduction with modern randomized meth-
ods and deep bounds from algebraic number theory and Diophantine equations.

This work also contributes significantly to our theoretical understanding of algorithms for super-
sparse polynomials by analyzing the general complexity of factoring and testing irreducibility.
They show that a number of such problems are co-NP-hard, implying for example that a fast
algorithm for such a problem would give a fast algorithm for integer factorization.

For these contributions, ACM SIGSAM awards Erich Kaltofen and Pascal Koiran the ISSAC
2005 Distinguished Paper Award.

The second award goes to Bernard Mourrain and Philippe Trébuchet for their paper “Generalized Normal
Forms and Polynomial System Solving”. The citation reads as follows:

Solving systems of polynomial equations stands as one of the great challenges of computer
algebra. Rewriting a polynomial in a simpler form using a set of polynomial equations is an
important and closely related problem. This paper addresses the challenge of solving a system
by developing a better way to simplify a polynomial with respect to that system.

The authors generalize the standard technique of simplification with respect to a monomial
term ordering to create a framework of reducing families, reduction operators, and choice
functions that leads to a generalized normal form for polynomials. Their generalization of
term ordering builds on the Macaulay resultant and holds the potential for better numerical
stability properties. They apply this framework to systems of polynomial equations with finitely
many solutions where they use conventional numerical linear algebra techniques to compute
the solution. The greater freedom in simplification afforded by this framework holds significant
promise for improving our ability to solve systems of polynomial equations.

For this contribution, ACM SIGSAM awards Bernard Mourrain and Philippe Trébuchet the
ISSAC 2005 Distinguished Paper Award.

Distinguished Student Author Awards

Christiaan van de Woestijne received an award for his paper “Deterministic equation solving over finite
fields” and a prize of USD 400.

Xavier Dahan, Wenyuan Wu, and Yuzhen Xie received awards for their paper “Lifting techniques for
triangular decompositions” coauthored with Eric Schost and Marc Moreno Maza. Each student received
a prize of USD 200.

Distinguished Poster Awards

The ISSAC Poster Committee selected two winners this year.

Evelyne Hubert and Irina Kogan received an award for their poster “Rational and Replacement Invariants
of a Group Action”. Each received a prize of USD 100.

Xavier Dahan, Marc Moreno Maza, Eric Schost, Wenyuan Wu, and Yuzhen Xie received an award for their
poster “On the Complexity of the D5 Principle”. Each received a prize of USD 40.
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Algebraic Biology 2007

July 2-4, 2007, Johannes Kepler University, Linz,

Research Institute for Symbolic Computation, Castle of Hagenberg, Austria

Communicated by Temur Kutsia

Aims and Scope: The Second International Conference on Algebraic Biology, AB’07, is an inter-
national forum to promote discussion and interaction between researchers who intend to apply symbolic
computation—computer algebra and computational logic—to various issues in biology. The conference
covers all aspects of applications of algebraic and logic methods in biology, addressing

e molecular sequence analysis e gene regulation e model identification
e molecular structure analysis e gene expression e system analysis and design
e molecular evolution e gene ontology e gsystem verification
e genomics e network inference e synthetic biological systems
e proteomics e mathematical modeling
and other problems in biology with symbolic methods including, but not restricted to:
e polynomial methods e automata methods e symbolic-numeric algorithms
e group theoretical methods e formal language methods (sequential, parallel, dis-
e rewriting methods e combinatoric methods tributed, grid processing).
e automated reasoning methods e gene ontology

In addition to the sessions with contributed papers, tutorial sessions will be organized. Tutorials will be
given by leading experts in life sciences and symbolic computation. Submission: Authors are invited to

submit original papers that have not been submitted for publication elsewhere. Submissions should be at
most 15 pages including references, prepared in LaTeX and formatted according to the Springer llncs style.
Submitted papers will be peer-reviewed, and the accepted papers will be published by Springer Verlag.

Important Dates: Keynote Speakers:

December 11, 2006: Registration of abstracts. Reinhard Laubenbacher,

December 18, 2006: Submission of full papers. Virginia Bioinformatics Institute (USA)
March 5, 2007: Notification. Bud Mishra, New York University (USA)
April 2, 2007: Camera-ready paper submission. Gheorghe Paun,

July 2-4, 2007: Conference. Romanian Academy of Sciences

Program Committee: Tatsuya Akutsu (Japan), Hirokazu Anai (Japan, Conference and PC Co-Chair), Armin
Biere (Austria), Bruno Buchberger (Austria, Conference Co-Chair), Vincenzo Capasso (Italy), Luca Cardelli (UK),
Gautam Dasgupta (USA), Francois Fages (France), Shinji Hara (Japan), Sepp Hochreiter (Austria), Hoon Hong
(USA, Conference Co-Chair), Katsuhisa Horimoto (Japan, PC and Conference Co-Chair), Hans Irschik (Austria),
Erich Kaltofen (USA), Veikko Kerdnen (Finland), Temur Kutsia (Austria, PC Co-Chair), James F. Lynch (USA),
Manfred Minimair (USA), Enno Ohlebusch (Germany), Stanly Steinberg (USA), Bernd Sturmfels (USA), Carolyn L.
Talcott (USA), Ashish Tiwari (USA), Jens Volkert (Austria), Dongming Wang (China/France), Kazuhiro Yokoyama
(Japan), Ruriko Yoshida (USA).

Further Information: http://www.risc.uni-linz.ac.at/about/conferences/ab2007/
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Differential Algebra and Related Topics
April 12-15, 2007
Workshop IT and AMS Special Session

Communicated by William Sit

The Kolchin Seminar in Differential Algebra of The City University of New York and the Department
of Mathematics at Rutgers University at Newark are pleased to announce the second joint International
Workshop and AMS Special Session on Differential Algebra and Related Topics. The joint conferences will
bring together experts from different areas related to differential algebra. The purpose is to disseminate
the methods and results of differential algebra to other areas, to encourage potential collaborations, and to
attract graduate students and new researchers. During the workshop, invited speakers will give expository
or survey talks on their fields. The Special Session at the AMS Eastern Section Meeting for Spring 2007
will bring the participants further up to date on the most current research through invited research reports.
Topics: Including but not limited to: Differential and difference algebra, differential Galois theory, differ-
ential algebraic geometry, differential algebraic groups, model theory, computational differential algebra,
Rota-Baxter type algebras, and applications to combinatorics, arithmetic geometry, control theory, dy-
namical systems, and integrability theories.

’ \ Workshop \ AMS Special Session
Date: April 12-13, 2007 April 14-15, 2007
Location: | Rutgers University at Newark Stevens Institute of Technology
URL: newark.rutgers.edu/liguo/DARTII/diffalg.html | www.sci.ccny.cuny.edu/ksda/ams.html
Contact: | Li Guo (liguo@newark.rutgers.edu) Jerry Kovacic (jkovacic@verizon.net)

Confirmed Speakers (alphabetical order):
Workshop: Marcelo Aguiar, Peter Clarkson, Robert Grossman, Andy Magid, David Marker, B. Heinrich
Matzat, Greg Reid, Brahim Sadik, Michael Singer, Marius van der Put, Mark van Hoeij.
AMS Special Session: Primitivo Acosta-Humanez, B. Heinrich Matzat, Alexandru Buium (Santiago
Simanca), Claude Mitschi, Lucia Di Vizio, Alexey Ovchinnikov, Anne Duval (Elie Compoint), Eugueny
Pankratiev, Oleg Golubitsky, Sylvie Paycha, Charlotte Hardouin, Wai Yan Pong, Julia Hartmann, Brahim
Sadik, Lourdes Juan, Michael Singer, Arne Ledet, Franz Winkler, Aleksandr B. Levin, Yang Zhang, Andy
Magid.
Organizers:

Phyllis Cassidy (CCNY and Smith College, emerita)

Richard Churchill (Hunter College and Graduate Center of CUNY)

Li Guo (Chair for Workshop, Rutgers University at Newark)

William Keigher (Rutgers University at Newark)

Jerry Kovacic (Chair for AMS Special Session, City College of CUNY)

William Sit (City College of CUNY, emeritus)

Funding: Limited funding for the Workshop for participants with US citizenship or permanent residence
status is expected from the National Security Agency. Applications for support should be sent to Li Guo.
All AMS participants must bear their own expenses, including AMS registration fee.
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2007 Federated Computing Research Conference

June 8-16, 2007, San Diego, California, USA

http://www.acm.org/fcrc/

Communicated by Julie Goetz, ACM, SIG Publications

The Federated Computer Research Conference (FCRC) assembles a spectrum of affiliated research
conferences and workshops into a week long coordinated meeting held at a common time in a common
place. This model retains the advantages of the smaller conferences, while at the same time, facilitates
communication among researchers in different fields in computer science and engineering. Mornings of
FCRC week will begin with joint plenary talks on topics of broad appeal to the computing research
community.

The ACM 2007 Federated Computing Research Conference will be held June 8-16 in San Diego, CA.
Affiliated conferences include:

e COLT 2007: 20th Annual Conference on Learning Theory
http://www.learningtheory.org/colt2007/

e CRA-W 2007: CRA-W Mentoring Workshop

http://www.cra.org/main/cra.events.upcoming.html

e EC 2007: The Eighth ACM Conference on Electronic Commerce
http://stiet.si.umich.edu/ec07/

e EXPERIMENTAL CS 2007: Workshop on Experimental Computer Science
http://www.cs.huji.ac.il/~feit/exp/

e HOPL-III: The Third ACM SIGPLAN History of Programming Languages Conference
http://research.ihost.com/hopl/

e IEEE Complexity 2007: IEEE Conference on Computational Complexity
http://www.computationalcomplexity.org

e ISCA 2007: International Symposium on Computer Architecture
http://www.cse.ucsd.edu/isca2007/

e LCTES 2007: ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-
bedded Systems
http://www.cs.purdue.edu/lctes07

e PADS 2007: Principles of Advanced and Distributed Simulation Workshop
http://www.pads-workshop.org

e PASTE 2007: ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering
http://paste07.cs.washington.edu
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PLAS 2007: Programming Languages and Analysis for Security Workshop
http://www.cs.umnd.edu/~mwh/PLASO7/

PLDI 2007: ACM SIGPLAN Conference on Programming Language Design and Implementation
http://ties.ucsd.edu/PLDI

SIGMETRICS 2007: International Conference on Measurement and Modeling of Computer Systems
http://www.cs.cmu.edu/~sigm07/

SPAA 2007: ACM Annual Symposium on Parallelism in Algorithms and Architectures
http://www.cs.jhu.edu/~spaa/2007/

STOC 2007: Annual ACM Symposium on the Theory of Computing
http://www.research.att.com/~dsj/stoc07.html

VEE 2007: International Conference on Virtual Execution Environments
http://veel7.cs.ucsb.edu/

2007 Federated Computing Research Conference Keynote Speakers

Dr. Frances Allen, 2007 ACM Turing Award Winner
Chuck Moore, AMD

David Culler, Berkeley and Deborah Estrin, UCLA
Avi Wigderson, Princeton

Guy Steele, SUN

Ed Lazowska, Washington
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Programming Languages for Mechanized Mathematics Workshop

web page: http://www.cas.mcmaster.ca/plmms07/, e-mail: carette@mcmaster.ca

Calculemus 2007 Workshop, Hagenberg, Austria
June 29-30, 2007

The intent of this workshop is to examine more closely the intersection between programming languages
and mechanized mathematics systems (MMS). By MMS, we understand computer algebra systems (CAS),
[automated] theorem provers (TP/ATP), all heading towards the development of fully unified systems.
There are various ways in which programming languages and systems for mathematics meet:

e Many systems for mathematics contain a dedicated programming language (and are frequently built
in that same language); some proof assistants (like the Ltac language for Coq) also have an embedded
programming language. Often this language captures only algorithmic content, and declarative or
representational issues are avoided.

e The mathematical languages of many systems for mathematics are very close to a functional pro-
gramming language (ex: the language of HOL can be used as a functional PL that is very close
to ML and Haskell). On the other hand, these languages also contain very rich specification ca-
pabilities rarely available in most computation-oriented programming languages. Even then, many
specification languages (B, Z, Maude, OBJ3, CASL, etc) still have more representational power.

e Conversely, functional programming languages have been getting "more mathematical” all the time
(eg: dependent types). But they are still not quite ready to 'host’ mathematics. There are some
promising languages on the horizon (Epigram, Omega) as well as some hybrid systems (Agda, Focal),
although it is unclear if they are capable of expressing the concepts present in mathematics.

e Systems for mathematics are used to prove programs correct (eg: via Hoare logic). An interesting
question is what improvements are needed for this both on the side of the mathematical systems and
on the side of the programming languages.

This workshop will accept two kinds of submissions: full research papers as well as position papers.
Research papers should be no more than 15 pages in length, and positions papers no more than 3 pages.
Submission will be through EasyChair. An informal version of the proceedings will be available at the
workshop, with a more formal version to appear later. We are looking into having the best papers completed
into full papers and published as a special issue of a Journal (details to follow).

Important Dates: April 25, 2007: Submission Deadline; June 29-30, 2007: Workshop.

Program Committee Lennart Augustsson [Credit Suisse], Wieb Bosma [Radboud University Nijmegen,
Netherlands|, Jacques Carette (co-Chair) [McMaster University, Canada], David Delahaye [CNAM, France],
Jean-Christophe Fillidtre [CNRS and Universit de Paris-Sud, France], John Harrison [Intel Corporation,
USA], Josef Urban [Charles University, Czech Republic], Markus (Makarius) Wenzel [Technische Univer-
sitt Mnchen, Germany]|, Freek Wiedijk (co-Chair) [Radboud University Nijmegen, Netherlands], Wolfgang
Windsteiger [University of Linz, Austria]

Location and Registration Location and registration information can be found on the Calculemus web
site. http://www.risc.uni-linz.ac.at/about/conferences/Calculemus2007/
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A Series of International Scientific Events
RISC Summer 2007

June/July 2007 - Research Institute for Symbolic Computation - Johannes Kepler University Linz - Austria

Communicated by Temur Kutsia

Research Institute for Symbolic Computation, RISC-Linz, in June/July 2007 organizes a series of
international scientific events RISC Summer 2007, consisting of the following conferences and schools:

e CoCoA’s International School in Computer Algebra.
June 18-22, 2007. RISC, Castle of Hagenberg, Austria.

e 9th International Conference on Effective Methods in Algebraic Geometry, MEGA’07.
June 24-30, 2007. Strobl am Wolfgangsee, Austria.

e 2nd RISC/SCIEnce Training School in Symbolic Computation.
June 25-July 8, 2007. RISC, Castle of Hagenberg, Austria.

e 2nd International Conference on Algorithmic Information Theory, AIT’07.
June 25-26, 2007. RISC, Castle of Hagenberg, Austria.

e 14th International Symposium on the Integration of Symbolic Computation and Mechanized Rea-
soning, Calculemus’07.
June 27-30, 2007. RISC, Castle of Hagenberg, Austria.

e Gth International Conference on Mathematical Knowledge Management, MKM’07.
June 27-30, 2007. RISC, Castle of Hagenberg, Austria.

e 2nd International Conference on Algebraic Biology, AB’07.
July 2—4, 2007. RISC, Castle of Hagenberg, Austria.

e Gth International Symposium for Parallel and Distributed Computing, ISPDC’07.
July 5-8, 2007. RISC, Castle of Hagenberg, Austria.

Further Information: http://www.risc.uni-1linz.ac.at/about/conferences/summer2007/
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NumAn 2007, Conference in Numerical Analysis

Recent Approaches To Numerical Analysis: Theory, Methods and Applications
http://www.math.upatras.gr/numan2007/

September 3-7, 2007, Kalamata, Greece

Communicated by Ilias S. Kotsireas

NumAn provides an opportunity to learn of new developments and to present original research results in
all areas of Numerical Analysis such as Theory, Methods and Applications.
The aims of the conference are:

1. to promote scientific activities, directions and pursuits on subjects that pertain to the conference,

2. to foster an exchange of views and ideas,

3. to study the theoretical background required for methods, algorithms and techniques used in appli-
cations,

4. to establish directions of theoretical results towards applications,

5. to highlight open problems and future directions of numerical analysis.

The program of NumAn 2007 will include invited presentations, contributed research papers and
posters, covering theory, methods and applications of Numerical Analysis.

Conference Topics: Specific topics include, but are not limited to: Numerical ODEs, Numerical PDEs,
Scientific Computing and Algorithms, Stochastic Differential Equations, Approximation, Numerical Lin-
ear Algebra, Numerical Integral Equations, Error Analysis and Interval Analysis, Difference Equations
and Recurrence Relations, Interpolation and Extrapolation, Numerical problems in Dynamical Systems,
Optimization and Nonlinear Equations Applications to the Sciences (Computational Physics, Computa-
tional Statistics, Computational Engineering etc.), Differential Algebraic Equations, Numerical methods
in Fourier analysis, High Performance Scientific Computing, Applied and Industrial Mathematics.

Proceedings: Papers presented at the conference may be submitted for publication in a Special Issue
of the Journal of Computational and Applied Mathematics http://www.elsevier.com/locate/cam pub-
lished by Elsevier. Details for paper submission to this special issue will be announced at the conference.

Financial Support: Some financial support will be available from the conference, to cover expenses of
graduate students and post-doctoral fellows.

Invited Speakers: N. Apostolatos, N. Artemiadis, D. Bertsekas, C. Dafermos, A. Fokas, A. Hadjidimos,
E. Houstis, P. Ligomenides, G. Nicolis, C. Tsallis.

Organizing Committee: E. Gallopoulos, University of Patras, Elias N. Houstis, University of Thessaly,

Ilias S. Kotsireas, Wilfrid Laurier University, Dimitrios Noutsos, University of Ioannina, Michael N. Vra-
hatis, University of Patras.
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Applications of Computer Algebra 2007
http://www2.o0akland.edu/aca/index.cfm

July 19-22, 2007, Oakland University, USA

Communicated by Tanush Shaska

Organization:

e Chair: Tanush Shaska

e Local Organizers:

J. Nachman
T. Shaska

Conference Theme: The ACA series of conferences is devoted to promoting the applications and devel-
opment of Computer Algebra and Symbolic Computation. Topics include computer algebra and symbolic
computation in engineering, the sciences, medicine, pure and applied mathematics, education, communi-
cation and computer science.

Special sessions: We are still accepting proposals to organize sessions at the conference. Sessions are
expected to have 4 or more speakers and to be relevant with one of the conference themes. Proposals for

organizing a session should be sent to shaska@oakland.edu

Approved sessions:

1.

NSO N

Applications of computer algebra in enumerative and algebraic combinatorics, A. Tefera, M. Apagodu
and M. Zeleke.

Non-Standard Applications of Computer Algebra, E. Roanes-Lozano, M. Wester

Coding theory, D. Joyner, T. Shaska, C. Shor.

Computer algebra in education, M. Beaudin, M. Wester, A. Akritas, B. Pletsch

Computational algebraic geometry, T. Shaska, A. Elezi

Symbolic Symmetry Analysis and Its Applications. N. Bila, I. Kogan

Algebraic and Numerical Computation for Engineering and Optimization Problems, D. Chibisov, V.
Ganzha, E. W. Mayr

. Numerical Algebraic Geometry, C. Wampler, A. Sommese
. Approximate Algebraic Computation Session, R. Corless, H. Kai, T. Sasaki, K. Shirayanagi.

Proceedings: There will be a volume proceedings for the conference.

125



ACM Communications in Computer Algebra, Vol 40, No. 3/4, September/December 2006 Conference Announcement

East Coast Computer Algebra Day
ECCAD 2007

web page: eccad07.washcoll.edu, e-mail: alobo2@washcoll.edu

Washington College, Chestertown, Maryland, USA

April 21 2007

ECCAD 2007 at Washington College in Chestertown, Md., is the 14th annual meeting of students, re-
searchers, and practitioners of Computer Algebra and Symbolic Computation. It is a venue for sharing
new results and work in progress and for meeting in informal settings in a relaxed atmosphere.

When: Saturday, April 21, 2007.

Registration is requested.

Proposals for poster presentations are solicited and will be entertained until April 14"

Events

— Three talks by invited specialists.
— Poster Presentations and Software Demonstrations
— A Moderated Panel Discussion on “Computer Algebra: The Road Ahead.”

e Wired and Wireless network access will be available.

The meeting is sponsored by Washington College and the National Science Foundation. Subject to approval
of a pending NSF proposal, there will be travel funds for US-based students and recent PhDs.

e Organizer: Austin Lobo, Washington College.

e Poster Chair: Markus Hitz, NGCSU.

e Panel Moderator: Emil Volcheck, ACM-SIGSAM.

e Local Arrangements: John May, University of Delaware; Michael McLendon, Washington College;
Jennifer Whitehead, Washington College.

e Advisory Council: Bruce Char, Drexel University; Erich Kaltofen, North Carolina State University;
B. David Saunders, University of Delaware; William Sit, City College of the City University of New
York; Stephen Watt,University of Western Ontario, Canada.
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Symbolic-Numeric Parallel Symbolic
Computation 2007 Computation 2007

July 25-27, 2007 July 27-28, 2007
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